-
Υπάρχει αναγκαιότητα σχεδιασμού, για απόλυτες αντισεισμικές κατασκευές, με μικρότερο κόστος κατασκευής.
Ο σχεδιασμός των κατασκευών σήμερα, είναι σχεδιασμός μερικής αντισεισμικής προστασίας, λόγο κόστους.
Μπορεί να σχεδιαστεί να παρέχει πλήρη προστασία, με μεγαλύτερο κόστος.
Είναι ουτοπία όμως, και ανέφικτο να πιστεύουμε ότι σήμερα υπάρχει απόλυτος αντισεισμικός σχεδιασμός.Σε αυτόν τον απόλυτο αντισεισμικό σχεδιασμό, ο οποίος δεν υφίσταται σήμερα, ευελπιστώ να βοηθήσω με την αντισεισμική ευρεσιτεχνία μου, και μάλιστα με λιγότερο κατασκευαστικό κόστος του υφιστάμενου.
Χρήσιμο άρθρο, που δείχνει την αναγκαιότητα σχεδιασμού, για απόλυτες αντισεισμικές κατασκευές, με μικρότερο κόστος κατασκευής.
http://users.auth.gr/~avram/publications/[6].pdfΙστοσελίδα αντισεισμικού συστήματος με τίτλο
ΥΔΡΑΥΛΙΚΟΣ ΕΛΚΥΣΤΉΡΑΣ ΔΟΜΙΚΩΝ ΕΡΓΩΝ
http://www.antiseismic-systems.com/index.php?lang=elΟ υδραυλικός ελκυστήρας δομικών έργων της εφεύρεσής μας καθώς και η μέθοδος εφαρμογής του στην κατασκευή δομικών έργων έχουν ως κύριο σκοπό την ελαχιστοποίηση των προβλημάτων που σχετίζονται με την ασφάλεια των δομικών κατασκευών στην περίπτωση αντιμετώπισης φυσικών φαινομένων όπως είναι ο σεισμός, οι ανεμοστρόβιλοι και οι πολύ ισχυροί άνεμοι. Σύμφωνα με την εφεύρεση, αυτό επιτυγχάνεται με μια συνεχή προένταση, (έλξη) του δώματος ενός μεγάλου ανεξάρτητου από τον φέροντα γεωμετρικού τμήματος της δομικής κατασκευής, προς το έδαφος, και του εδάφους προς την κατασκευή, κάνοντας αυτά τα δύο μέρη ένα σώμα «σάντουιτς».
α) Αν έχουμε ένα τοιχίο κολόνας πακτωμένο με το έδαφος, και οπλισμένο με ΟΣ, ή
β) Αν έχουμε ένα τοιχίο κολόνας προτεταμένο με το έδαφος ( σαν σάντουιτς )
και τους εφαρμόσουμε μία οριζόντια έλξη, αυτά το δύο τοιχία, θα έχουν περισσότερη αντοχή στην πλάγια έλξη, από......μία κολόνα, που απλός πατάει πάνω στο έδαφος.Πιστεύω ότι αυτό είναι κατανοητό από όλους.
Αν τώρα έχουμε δύο κολόνες τοιχία, (όπως τα ανωτέρω τοιχία, ασύνδετα με το έδαφος ) αλλά συνδέονται μεταξύ τους στο πάνω μέρος τους με έναν δοκό.
Αν τους εφαρμόσουμε πάλη μία πλάγια δύναμη, κατά την γνώμη μου, θα συμβεί το εξής.
α) πρώτα τα τοιχία τα ίδια, θα φέρουν μία μικρή αντίσταση στην πλάγια δύναμη.
β) Όταν αυτή η αντίσταση των τοιχίων καμφθεί, αυτά δεν υποχωρούν, όπως πριν, διότι τότε μία άλλη δύναμη ενεργεί.γ)Αυτή η άλλη πρόσθετη δύναμη που αντιστέκεται στην πλάγια έλκη, είναι στους κόμβους.
Αυτή η δύναμη των κόμβων, προκύπτει από την ένωση των δύο τοιχίων με την δοκό, δημιουργώντας σε αυτά μία δομική ακεραιότητα, και οντότητα.
Αυτή η δύναμη των κόμβων, αντιστέκεται, στην πλάγια δύναμη, σαν ροπή.
Αν τώρα προσθέσουμε όλες τις δυνάμεις αντίστασης ....αντιδρώντας.... προς την άλλη πλάγια δύναμη, θα δούμε ότι.
Τα τοιχία που είναι πακτωμένα, ή προτεταμένα με το έδαφος, θα φέρουν περισσότερη αντίσταση στην πλάγια δύναμη, από ότι αυτά που απλώς πατάνε πάνω στο έδαφος.
Η αντίσταση των κόμβων, δεν θα υπάρξει ποτέ, αν τα προτεταμένα ή πακτωμένα με το έδαφος τοιχία καταφέρουν μόνα τους, να φέρουν αντίσταση στις πλάγιες δυνάμεις που τους εφαρμόζουμε.
Εδώ βλέπουμε ξεκάθαρα, ότι τα προτεταμένα, ή πακτωμένα με το έδαφος τοιχία, είναι ένα + στην αντίδραση της κατασκευής, ως προς τις αδρανειακές οριζόντιες εντάσεις που υφίσταται η κατασκευή, λόγο αντίθετης επιτάχυνσης του σεισμού.
Αν η διατομή κάτοψης των τοιχίων είναι η ανάλογη, και η πάκτωση,ή προένταση η ανάλογη, τότε οι κόμβοι δεν θα χρειαστούν να υποβάλουν καμία ροπή αντίστασης, στις πλάγιες δυνάμεις.
Οπότε καταργούμε τις ροπές των κόμβων.
Αυτή την ένωση, των τοιχίων με το έδαφος, την εφαρμόζει ο ελκυστήρας.
Τι κάνει η ευρεσιτεχνία, που δεν κάνει η εφαρμοσμένη τεχνολογία σήμερα.
Η εφαρμοσμένη τεχνολογία σήμερα απλός εδράζει την κατασκευή στο έδαφος.
Η ευρεσιτεχνία την ενώνει με το έδαφος, κάνοντας αυτά τα δύο ένα, (σαν σάντουιτς)
Για μένα αυτή η ένωση της κατασκευής με το έδαφος, αλλάζει ευεργετικά την κατεύθυνση και το είδος των δυνάμεων, που εφαρμόζονται στην κατασκευή δυναμικά, κατά την διέγερση του σεισμού, και προκαλούν αστοχία.
Δυνάμεις που προκαλούν αστοχία στα κτήρια.
α) Οι δυνάμεις διάτμησης.
β) Οι ροπές στους κόμβους
Πως δημιουργούνται- ΔΥΝΑΜΕΙΣ ΔΙΑΤΜΗΣΗΣ
α) Οι δυνάμεις διάτμησης, δημιουργούνται κυρίως στα κάθετα στοιχεία στήριξης κατά την επιτάχυνση του σεισμού, λόγο αδράνειας της μάζας.
Ερώτηση.
Η διάτμηση είναι η ίδια σε όλα τα στοιχεία στήριξης?
Απάντηση
Όχι. Η διάτμηση είναι μεγαλύτερης ισχύος στα στοιχεία του ισογείου.
Ερώτηση. Γιατί?
Απάντηση
Για δύο κύριους λόγους.
α) Έχουν να διαχειριστούν (σε μετακίνηση) περισσότερα φορτία μάζας, που συνεπάγεται σε μεγαλύτερη αδράνεια, οπότε στην δημιουργία μεγαλύτερης διάτμησης στην διατομή κάτοψις του στοιχείου.
β) Λόγο ακαμψίας των στοιχείων του ισογείου.
Όλα τα άλλα στοιχεία στήριξης, ( εκτός του ισογείου ) έχουν κάποια ελαστικότητα στους κόμβους, και στα στοιχεία στήριξης, η οποία είναι ευεργετική, διότι απορροφούν ενέργεια του σεισμού, λόγο μετατροπής της ενέργειας αυτής, σε θερμότητα.
Αυτή η ευεργετική απορρόφηση ενέργειας,καταργείται κατά μεγάλο βαθμό στα στοιχεία του ισογείου, για ένα κύριο λόγο.
Διότι κάτω από το στοιχείο ( κολόνα ) του ισογείου υπάρχει η βάση, η οποία είναι άκαμπτη, (διότι είναι συνήθως μέσα στο έδαφος) και μεταδίδει ακέραια την επιτάχυνση του σεισμού. ( Οπότε και αυξημένες διατμητικές τάσεις )
Στα στοιχεία ( κολόνες ) των πάνω ορόφων δεν συμβαίνει το ίδιο, διότι το στοιχείο του κάτω ορόφου έχει απορροφήσει κάποια ενέργεια, μεταδίδοντας στον πιο πάνω όροφο μικρότερη ενέργεια.Σε συνδυασμό με τα αυξημένα φορτία της μάζας που έχει να διαχειριστεί, έχουμε αυξημένες κατά πολύ τις τάσεις ( δυνάμεις )
διάτμησης στα στοιχεία του ισογείου.
Για τον λόγο αυτό, οι περισσότερες αστοχίες συμβαίνουν στο ισόγειο.
Αυτό το φαινόμενο μπορούμε να το λύσουμε αυξάνοντας την διατομή κάτοψης των στοιχείων του ισογείου.
Αν όμως το κάνουμε αυτό, έχουμε άλλο πρόβλημα.α) Χάνουμε την ελαστικότητα των στοιχείων. ( οπότε και την απόσβεση της επιτάχυνσης )
- ΡΟΠΕΣ ΣΤΟΥΣ ΚΌΜΒΟΥΣ
Οι ροπές στους κόμβους, οι οποίες και αυτές καταλήγουν να καταπονούν τα κάθετα και οριζόντια στοιχεία στήριξης, με διατμητικές τάσεις, συμβαίνουν για τον εξής λόγο.
Κατά την επιτάχυνση του σεισμού, έχουμε την γνωστή αδράνεια του φέροντος οργανισμού, αλλά και την αδράνεια των φερόντων μαζών που έχουν να διαχειριστούν, και επιβαρύνουν με οριζόντιες διατμητικές τάσεις τα κάθετα στοιχεία.
Σε ένα πολυόροφο κτήριο, τα κάθετα στοιχεία, είναι ενιαία από τον πρώτο όροφο, μέχρι τον τελευταίο.
Η δομική ακεραιότητα όλων των στοιχείων του φέροντος οργανισμού, ( κολόνες, δοκοί, πλάκες ) επιτυγχάνετε όταν αυτά ενωθούν στα κομβικά σημεία
Αυτά τα κομβικά σημεία
στην αδράνεια του φέροντος οργανισμού, αντιδρούν με ροπές, που καταπονούν με διατμητικές τάσεις τα κάθετα και οριζόντια στοιχεία
Αν ο σχεδιασμός δεν είναι σωστός, καταλήγει σε αστοχία, του κάθετου στοιχείου, που είναι ψαθυρό, και όχι του οριζόντιου.
Ο λόγος είναι ότι το κάθετο στοιχείο, ( κολόνα ) έχει μικρότερη διατομή κάτοψις, σε σχέση με την δοκό, της οποίας η μάζα, καθ όλο το μήκος της αποτελεί δομική οντότητα με την πλάκα, οπότε υπολογίζεται σαν ενιαίο σώμα ισχυρότερη του κάθετου στοιχείου
Αν λάβουμε υπ’ όψιν ότι μία κολόνα φέρει επάνω της τουλάχιστον δύο δοκούς, καταλαβαίνουμε την διαφορά αντοχής ( ως προς την διάτμηση ) μεταξύ της κολόνας, και των οριζόντιων στοιχείων στήριξης.Κατά την ταλάντωση ενός ψιλού κτηρίου, αυτό έχει την τάση να σηκωθεί μονόπλευρα λόγο ροπής δημιουργώντας ένα κενό κάτω από τις πίσω βάσεις.
Δηλαδή οι μπροστινές κολόνες προσπαθούν να σηκώσουν τις πίσω κολόνες, λόγο τις δομικής οντότητας που έχουν, και τους την προσφέρει η ένωσή τους με τις δοκούς
Αυτό το κενό, ακυρώνει την αντίσταση του εδάφους προς την βάση, οπότε η βάση, από εκεί που κράταγε το κτίριο μένει μετέωρη στον αέρα.
Βέβαια αυτό στην πράξη δεν συμβαίνει ποτέ, διότι τα στατικά φορτία της κατασκευής, κατά την μονόπλευρη άνοδό του, έρχονται να καθηλώσουν την κολόνα με την βάση στο έδαφος,δημιουργώντας ροπές στους κόμβους,Αυτές οι ροπές,δημιουργούν λοξή διάτμηση στην διατομή κάτοψης του κάθετου στοιχείου, το οποίο δεν αντέχει τα φορτία, και έχουμε ψαθυρά αποτελέσματα, ακυρώνοντας την δομική οντότητα της κατασκευής.
Αυτά που εξήγησα φαίνονται καθαρά στα πρώτα λεπτά του πειράματος που έχω κάνει.
http://www.youtube.com/watch?v=JJIsx1sKkLk
Στο πείραμα στα πρώτα λεπτά, βλέπουμε έναν ξύλινο φέροντα οργανισμό, ( σκελετό οικοδομής ) ο οποίος κατά την αδράνεια ταλαντεύεται και σηκώνετε μονόπλευρα, εναλλάξ.
Αυτό συμβαίνει διότι είναι ελαφρύς, και οι κόμβοι του αντέχουν τις ροπές, που δημιουργούνται από το στατικό βάρος της αστήρικτης πλευράς του φέροντα οργανισμού.
Μόλις όμως του βάλουμε τα στατικά φορτία των δύο τούβλων, αυτός ναι μεν ταλαντεύεται, αλλά οι βάσεις δεν σηκώνονται μονόπλευρα,
διότι οι κόμβοι δεν αντέχουν πια το πρόσθετο στατικό φορτίο των τούβλων.
ΛΥΣΗ
Εδώ από την ανάλυση που έκανα πάρα πάνω, βλέπουμε γιατί αστοχεί μία κατασκευή, όταν αυτή περάσει τα όρια σχεδίασης.
Δεν υπάρχει απόλυτος αντισεισμικός σχεδιασμός
Ο Ελληνικός αντισεισμικός κανονισμός έχει κάποια αντοχή, και από εκεί και πέρα υπάρχει μόνο η ψαθυρή αλήθεια.
Για μένα η αντοχή του έχει συγκεκριμένα όρια για τον λόγο που ανέφερα πάρα πάνω.
(Αυτό το φαινόμενο μπορούμε να το λύσουμε αυξάνοντας την διατομή κάτοψης των στοιχείων του ισογείου.
Αν όμως το κάνουμε αυτό, έχουμε άλλο πρόβλημα.Χάνουμε την ελαστικότητα των στοιχείων. ( οπότε και την απόσβεση της επιτάχυνσης ) )
Η ΛΥΣΗ ΠΟΥ ΠΡΟΤΕΙΝΩ
Φαίνεται και στην συνέχεια του πειράματος που σας παρέθεσα στο link, αλλά φαίνεται και σε αυτά που θα πω πάρα κάτω.
Υπάρχουν τρία προβλήματα που πρέπει να λύσουμε, για να εφαρμόσουμε προένταση μεταξύ εδάφους και δώματος,.... ή απλή πάκτωση του εδάφους με την κατασκευή.
α) Ο λυγισμός
β) Η αντοχή των υλικών.
γ) Η αντοχή του εδάφους
Για να δουλέψει ευεργετικά στον σεισμό η προένταση, ή η πάκτωση της κατασκευής με το έδαφος, χρειάζεται μεγάλη διατομή κάτοψις των στοιχείων στήριξης, και μεγάλη αντοχή υλικών, αν πρόκειται να εφαρμόσουμε προένταση, ώστε να έχουμε πρόσθετα τα ευεργετήματα αυτής, στα πλαίσια της επαλληλίας.
Αυτά τα δύο στοιχεία που χρειάζομαι μου τα προσφέρουν τα προκατασκευασμένα σπίτια, τα οποία είναι εξ ολοκλήρου από οπλισμένο σκυρόδεμα.
Το γ) πρόβλημα των χαλαρών εδαφών, μου το λύνει η κυτόστρωση, και ο ιδικός μηχανισμός του υδραυλικού ελκυστήρα, που βελτιώνει την αντοχή του εδάφους, και παρέχει πρόσθετη στήριξη στην βάση.Κοίτα τη παθαίνει η συμβατική κατοικία.
http://www.youtube.com/watch?v=Hgc19Qsj ... re=related
Φαντάσου σπίτια ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΈΝΑ από οπλισμένο σκυρόδεμα, βιδωμένα στις τέσσερις γωνίες με την σεισμική βάση.......και ανάποδα να τα γυρίσεις δεν θα πάθουν τίποτα.
Ερώτηση
Όταν δεν τα βιδώσουμε με την βάση, τι θα πάθουν?
Απάντηση
Αν έχουμε ψιλά κτήρια εξ ολοκλήρου κατασκευασμένα από οπλισμένο σκυρόδεμα, αυτά θα αντέξουν στην διάτμηση, αλλά οι κόμβοι τους θα έχουν αυξημένα φορτία, λόγο του κενού που αναφέραμε ότι δημιουργείται κάτω από την βάση κατά την ροπή αδράνειας, και λόγο μεγαλύτερου στατικού φορτίου που έχουν.
Ο συνδυασμός αδράνεια και στατικά φορτία, δημιουργούν τα λοξά κρακ στους τοίχους.
Για αυτό είναι λοξά τα κρακ, διότι ακολουθούν την συνισταμένη των δυνάμεων της αδράνειας και των στατικών φορτίον
Για τον λόγο αυτό, οι κατασκευές των προκατασκευασμένων είναι για λίγους ορόφους.
Αν όμως κάνουμε ένα σώμα το προκατασκευασμένο από οπλισμένο σκυρόδεμα με το έδαφος, http://postimage.org/image/r1aadhj8/
...δεν μπορεί να σηκωθεί μονόπλευρα, στην ροπή αδράνειας, οπότε, καταργούμε τις ροπές των κόμβων.Υπάρχει και το οικονομικό μέρος.
Πιστεύω ότι αυτή η μέθοδος θα βάλει τα προκατασκευασμένα από σκυρόδεμα σπίτια, και μέσα στην πόλη.Έως τώρα αυτά τα σπίτια είναι μόνο για εξοχικά.
Ο κύριος λόγος είναι ότι, ο νόμος δεν τους επιτρέπει, το ύψος τους να ξεπερνά τους δύο ορόφους.
Όταν όμως γίνουν άτρωτα στον σεισμό, και μπορούν να αντέχουν πολλούς ορόφους, τότε θα επιτραπεί η δόμηση στην πόλη.Τώρα δεν επιτρέπονται μέσα σε πόλεις, διότι αν στην πόλη επιτρέπετε να χτίσεις ένα δεκαόροφο, και το προκατασκευασμένο αντέχει δύο ορόφους, δεν σε συμφέρει να χάσεις τον αέρα για άλλους οκτώ ορόφους.
Αν όμως το κάνω να αντέχει, τότε θα καταργηθούν οι συμβατικοί τρόποι κατασκευής, γιατί τα προκατασκευασμένα είναι πιο φτηνά, 30-50% γιατί είναι βιομηχανοποιημένα.
Έτσι θα έχουν κέρδος οι βιομήχανοι από αυτή την αλλαγή.Εκτός όμως από αντισεισμικό, η ευρεσιτεχνία μπορεί να χρησιμοποιηθεί και σαν προεντεταμένο αγκύριο, για την βελτίωση εδαφών
Π.Χ http://postimage.org/image/29l3p1xpg/
Διότι, και βελτιώνει την πυκνότητα των χαλαρών εδαφών, αλλά δεν αφήνει και το έργο να πάει ούτε πάνω,( στην ταλάντωση ) ούτε κάτω ( σε υποχώρηση του εδάφους )
Έχω αναφέρει τους τρόπους τοποθέτησης σε υφιστάμενα και υπό κατασκευή κτήρια, και άλλες κατασκευές, όπως φράγματα, γέφυρες, κ.λ.π
Κάνει και για την προστασία των ελαφριών κατασκευών από τους ανεμοστρόβιλους που πλήττουν κυρίως την Αμερική.Φιλικά Γιάννης Λυμπέρης
http://www.youtube.com/watch?v=KPaNZcHB ... r_embedded - ΔΥΝΑΜΕΙΣ ΔΙΑΤΜΗΣΗΣ
-
Αρθρο του seismic για την ψαθυρή οικοδομή του σήμερα, και την αναγκαιότητα της αντισεισμικής ευρεσιτεχνίας.
Κατά την διέγερση του σεισμού ο φέρον οργανισμός ( σκελετός οικοδομής ) με την σημερινή μέθοδο κατασκευής παρουσιάζει προβλήματα τα οποία εγώ με την ευρεσιτεχνία λύνω.
Ποια είναι αυτά.
α) Τέμνουσες
Τι είναι αυτές, και που υφίστανται πάνω στον σκελετό της οικοδομής.Οι τέμνουσες είναι δύο αντίθετες δυνάμεις, των οποίων οι άξονες τους είναι παράλληλοι και περνούν ο ένας πλησίον του άλλου, όπως π.χ το ψαλίδι.
Στον σκελετό οι τέμνουσες υφίστανται σε πολλά σημεία του.
Τα κυριότερα σημεία που οι τέμνουσες είναι ψαθυρές είναι.α) Στο κάτω μέρος της κολόνας του ισογείου, κοντά στο σημείο που ενώνετε με την βάση.
Ερώτηση...γιατί σε εκείνο το σημείο οι τέμνουσες είναι πιο ψαθυρές?Απάντηση...Διότι ο σεισμός έχει μια φορά που την μεταδίνει ατόφια στην βάση της κολόνας διότι αυτή είναι θαμμένη στο έδαφος, και την αναγκάζει το έδαφος να κινηθεί στον ρυθμό της επιτάχυνσης και φοράς του σεισμού.
Ο σκελετός αντιδρά σε αυτήν την κίνηση, λόγο αδράνειας και στο κάτω σημείο της κολόνας δημιουργείται η τέμνουσα.
Το κάτω σημείο της κολόνας του ισογείου είναι πιο ψαθυρό, για τρεις κύριους λόγους.-
διότι έχει να διαχειριστεί περισσότερα στατικά φορτία του φέροντος, από ότι έχουν να διαχειρισθούν οι άλλες κολόνες των πάνω ορόφων,
-
διότι έχει να διαχειρισθεί περισσότερες οριζόντιες φορτίσεις του σεισμού
-
διότι δεν υπάρχει καθόλου ελαστικότητα στο κάτω σημείο της κολόνας του ισογείου, η οποία χρησιμεύει για την απορρόφηση της ενέργειας του σεισμού, ενώ αυτή η ελαστικότητα υπάρχει στις πάνω κολόνες.
Οπότε για τους τρεις λόγους που ανέφερα συμπεραίνουμε ότι οι τέμνουσες σε αυτές τις κολόνες του ισογείου είναι μεγαλύτερες από ότι είναι στις κολόνες των πάνω ορόφων, διότι διαχειρίζονται μεγαλύτερες οριζόντιες και κάθετες φορτίσεις κατά την διέγερση του σεισμού.
Τι κάνει η ευρεσιτεχνία για να λύση το πρόβλημα της αστοχίας που προκαλούν οι τέμνουσες στις κολόνες του ισογείου.
Από την στιγμή που ο μηχανισμός του υδραυλικού ελκυστήρα εφαρμόζει κάθετη προένταση στις κολόνες ή τα τοιχία, ξέρουμε ότι η προένταση αυτή στα πλαίσια της επαλληλίας (μέσα στο πλαίσιο αντοχής της κολόνας ) έχει ευεργετικά αποτελέσματα.
Πια είναι τα ευεργετικά αποτελέσματα της προέντασης ως προς τις τέμνουσες των κολονών του ισογείου.
Η προένταση (γενικά η θλίψη) έχει πολύ θετικά αποτελέσματα, καθότι βελτιώνει τις τροχιές του λοξού εφελκυσμού.
Από την άλλη έχεις και το άλλο καλό...τη μειωμένη ρηγμάτωση λόγω θλίψης, κάτι που αυξάνει την ενεργό διατομή και αυξάνει και τη δυσκαμψία της κατασκευής.
Παράδηγμα...
Εάν έχουμε δύο τσιμεντόλιθους και τους τοποθετήσουμε τον έναν πάνω στον άλλον.
Αν μετά εφαρμόσουμε στον πάνω τσιμεντόλιθο μία δεξιά οριζόντια φόρτιση 10 κιλών, και στον κάτω τσιμεντόλιθο μία αριστερή οριζόντια φόρτιση 10 κιλών, θα παρατηρήσουμε ότι αυτοί θα ολισθήσουν στο σημείο που εφάπτονται.
Αυτή είναι η τέμνουσα που σπάει την κολόνα.Αν όμως καθίσει κάποιος πάνω στους δύο τσιμεντόλιθους, εφαρμόζοντας σε αυτούς ένα κάθετο φορτίο όπως εφαρμόζει και η προένταση, τότε θα παρατηρήσουμε ότι οι αριστερόστροφες και δεξιόστροφες δυνάμεις που εφαρμόσαμε πριν, δεν επαρκούν για να αναγκάσουν τους τσιμεντόλιθους να ολισθήσουν.
Συμπέρασμα.
Η θλίψη ή η προένταση, αυξάνει την αντοχή των κολονών του ισογείου ως προς τις τέμνουσες.Εκτός από τις τέμνουσες που αναφέραμε πάρα πάνω, που κατά κύριο λόγο εφαρμόζονται στο κάτω μέρος της κολόνας του ισογείου, οι τέμνουσες εφαρμόζονται και σε άλλα σημεία του φέροντος σκελετού.
Πια είναι τα άλλα σημεία που εφαρμόζονται τέμνουσες???
Στους κόμβους ( γωνίες ) που σχηματίζονται στο σημείο ένωσης, της κολόνας με την δοκό, ή της δοκού με την πλάκα, ή της βάσης με την κολόνα, ή της πεδιλοδοκού με την βάση, ή της κοιτόστρωσης ( ραντιέφ ή αλιώς κοιτόστρωση= μονοκόμματη βάση με εμβαδόν όσο το εμβαδόν του ισογείου του σκελετού ) με την κολόνα.Πως δημιουργούνται οι τέμνουσες σε αυτά τα σημεία?
Η ροπή που εφαρμόζεται στους κόμβους κατά τον σεισμό, δημιουργεί τέμνουσες ( λόγο αντίστασης του κόμβου, ) και στην κολόνα, και στην δοκό.
Εκτός των λόγων που αναφέραμε πριν, υπάρχει και ένας πρόσθετος λόγος που δημιουργεί ροπές στους κόμβους, οπότε και τέμνουσες στις κολόνες και τους δοκούς.Ο πρόσθετος λόγος είναι η -ταλάντωση,- που επέρχεται στο σκελετό (κυρίως στον πολύ ψιλό σκελετό )κατά τον σεισμό.
Τι προβλήματα δημιουργεί η ταλάντωση στο κτήριο???
Αυτό είναι ένα μεγάλο ερώτημα, που για να απαντηθεί πρέπει να χωρισθεί σε δύο ενότητες.
α) Η πρώτη ενότητα έχει να κάνει με την ίδιο συχνότητα του κτηρίου με τον σεισμό.
Από αυτή εξαρτάτε η ταλάντωση του κτιρίου.Το ψιλό το κτήριο έχει πρόβλημα από τον μακρινό σεισμό, διότι το μήκος κύματος του μακρινού σεισμού, είναι μεγάλο, και ταλαντεύει το ψιλό κτήριο περισσότερο από το μεσαίο, και πολύ περισσότερο από το μικρό.
Αντίθετα το μικρό σε ύψος κτήριο έχει πρόβλημα με τον κοντινό σεισμό, όπου το εύρος κύματος που έχει είναι μικρότερο, αλλά με μεγαλύτερη συχνότητα.
Αυτά φαίνονται καθαρά σε αυτό το βίντεο.http://www.youtube.com/watch?v=LV_UuzEz ... re=related
β) η δεύτερη ενότητα έχει να κάνει με το σχήμα του κτηρίου, και τις διαστάσεις των κολονών, τοιχίων ( διαστασιολόγιση διατομής κάτοψης ) και την φορά του σεισμού, αλλά κατά κύριο λόγο με τα κάθετα φορτία του φέροντος σκελετού.
Ας εξετάσουμε τρεις διαφορετικούς φορείς κατασκευών
α) Φέρον οργανισμός ( σκελετός οικοδομής )
Ξέρουμε ότι μία κολόνα μικρής διατομής ( εν σχέση με το ύψος της ) είναι πιο ελαστική, από μία κολόνα μεγάλης διατομής.
Ξέρουμε δεδομένα ότι οι πολλές μεμονωμένες κολόνες και τα πολλά τοιχία δημιουργούν δομική οντότητα μεταξύ των, με την σύνδεσή τους με τους δοκούς.
Δηλαδή αν μία κολόνα ύψους 7 ορόφων υψωνόταν μόνη της χωρίς την σύνδεση αυτής με τις άλλες κολόνες, ( με την βοήθεια των δοκών ) αυτή θα έπεφτε με τον αέρα και μόνο.
Συμπέρασμα
Όλη η δομική οντότητα του σκελετού της οικοδομής ως προς τις πλάγιες φορτίσεις, που μεταδίδει ο αέρας ή η αδράνεια του σκελετού στον σεισμό, εξαρτάτε από την ένωση των κολονών και δοκών στους κόμβους.Αυτό ξεχωρίζει την στατική, με την δυναμική των κατασκευών.
Η στατική ασχολείται με τα κάθετα μόνο φορτία του σκελετού, ενώ η δυναμική των κατασκευών με τις πλάγιες φορτίσεις προερχόμενες από τον αέρα, ή τον σεισμό.Τι παθαίνει ο σκελετός της οικοδομής κατά την ταλάντωση προερχόμενη από τον σεισμό και τον αέρα?
Ας εξετάσουμε απλά βάση των νόμων της φυσικής, τα φορτία που δέχεται ο σκελετός της οικοδομής κατά την διέγερση του σεισμού.
α) Αδράνεια.
Τα σώματα τους αρέσει να εξακολουθούν να κάνουν αυτό που κάνουν.
Αν είναι ακίνητα, τους αρέσει να μένουν ακίνητα.
Αν κινούνται τους αρέσει να συνεχίζουν να κινούνται.
Παράδειγμα http://www.youtube.com/watch?v=fLLxU2mqb0UΣυμπέρασμα. Όταν ο σεισμός κινείται κατά μία κατεύθυνση, ο σκελετός της οικοδομής αντιδρά σε αυτήν την κίνηση, λόγο της αδράνειας.
Αυτή η αντίδραση δημιουργεί τις τέμνουσες του ισογείου.Αυτή η αντίδραση είναι που προκαλεί και την ταλάντωση, η οποία εξαρτάτε από την συχνότητα του σεισμού, το εύρος κύματος αυτού, και το ύψος του κτηρίου ( εν σχέση του εμβαδού του )
Αυτή η ταλάντωση τείνει να ανατρέψει και τον φέροντα σκελετό με πολύ ψιλό κέντρο βάρους.
Δηλαδή ο φέροντας ( κολόνες, δοκάρια, πλάκες ) σαν δομική οντότητα που του την προσφέρουν οι κόμβοι ( γωνίες ) αντιδρά σε αυτή την ταλάντωση στους κόμβους.Τι φορτία δέχονται οι κόμβοι κατά την διέγερση του σεισμού?
Τα κύρια φορτία που δέχονται είναι δύοα) Την αδράνεια της μάζας ( της πλάκας, των πραγμάτων, της τοιχοποιίας, ) τα οποία ονομάζουμε οριζόντιες φορτίσεις.
β) Τα φορτία της κατασκευής ( το ιδικό βάρος της πλάκας των πραγμάτων, της τοιχοποιίας ) τα οποία ονομάζουμε κάθετες φορτίσεις.
Για να εξετάσουμε τώρα πως ενεργούν πάνω στον κόμβο οι οριζόντιες και οι κάθετες φορτίσεις.
Ένας κόμβος με γωνία 90 μοιρών από οπλισμένο σκυρόδεμα για να παραμείνει ακέραιος, πρέπει κατά τον σεισμό, να διατηρήσει την γωνία του στις ίδιες μοίρες.
Η ταλάντωση όμως κατά τον σεισμό, όπως ξέρουμε, αλλάζει την κλίση της κολόνας, και από κατακόρυφος που ήταν ο άξονας της, αλλάζει μερικές μοίρες ( εναλλάξ του κάθετου άξονα )
Η κολόνα κατά την φάση που η κλίση της αλλάζει, αναγκάζει μέσο του κόμβου που τους ενώνει με τα άλλα στοιχεία το δοκό να μετακινήσει και αυτός τον οριζόντιο άξονα του μερικές μοίρες προς τα πάνω.
Εδώ υπάρχει το πρόβλημα του σκελετού κατά την ταλάντωση, διότι την στιγμή που η δοκός δέχεται φορτία με τάση ανόδου από την κολόνα, τότε έρχονται σε αντίθεση με τα καθοδικά φορτία του βάρους του κτηρίου.
Τα καθοδικά φορτία υπερνικούν τα φορτία ανόδου της δοκού, με αποτέλεσμα η δοκός να αναγκάζεται να παραμείνει οριζόντια.
Η κολόνα όμως, δεν παραμένει οριζόντια, ( αλλάζει μερικές μοίρες ο κάθετος άξονας της )
Το αποτέλεσμα είναι ο κόμβος που προσδίδει δομική οντότητα στα στοιχεία αυτά να τείνει από 90 μοίρες που είναι, να γίνει 80 μοίρες, ή 100 μοίρες, εναλλάξ κατά την ταλάντωση.Ο κόμβος όμως είναι πολύ άκαμπτος και γερός, και αντί να αλλάξει μοίρες, μεταδίδει τα καθοδικά και οριζόντια φορτία στις διατομές των στοιχείων ( διατομή κάτοψις κολόνας, διατομή δοκού και πλάκας )
Οπότε στην πράξη δεν σπάει ο κόμβος, αλλά το πιο ψαθυρό στοιχείο λίγο πιο πέρα από τον κόμβο.
Την ψαθυρότητα την δημιουργεί η αντίθεση των φορτίων, στο λαιμό της κολόνας και της δοκού, δημιουργώντας τις τέμνουσες.Πιο είναι πιο ψαθυρό στοιχείο, η κολόνα ή η δοκός?
Φυσικά είναι η κολόνα, διότι αυτή έχει μικρότερη διατομή από την διατομή της δοκού, διότι η διατομή της δοκού είναι ένα σώμα ακέραιο με την διατομή της πλάκας, και οι δύο μαζί υπερτερούν της διατομής της κολόνας.
Και όπως ξέρουμε, μεγαλύτερη διατομή, περισσότερη αντοχή ως προς τις τέμνουσες.Από ότι αναφέραμε πιο πάνω, οι κύριες φορτίσεις που είναι ψαθυρές για τον φέροντα οργανισμό κατά την διέγερση του σεισμού, είναι δύο.
α) Οριζόντιες φορτίσεις ( προερχόμενες από την αδράνεια )
β) Κάθετες φορτίσεις ( προερχόμενες από το ιδικό βάρος του φέροντος, της τοιχοποιίας, και των πραγμάτων )Ακόμα αναφέραμε πιο πάνω, ότι η κολόνα κατά τον σεισμό, μετατοπίζει τον κάθετο άξονά της πότε δεξιά πότε αριστερά, ενώ η δοκός διατηρεί τον οριζόντιο άξονά της λόγο των κάθετων φορτίσεων.
Συμπέρασμα
Αν μπορέσουμε να σταματήσουμε τον κάθετο άξονα της κολόνας να αλλάζει μοίρες εναλλάξ, ( λόγο πλάγιων φορτίσεων ) τότε δεν θα υπάρχουν τέμνουσες στα στοιχεία της κολόνας και της δοκού, διότι ο κόμβος θα παραμείνει 90 μοίρες.Πως μπορούμε να σταματήσουμε τον κάθετο άξονα της κολόνας να αλλάζει μοίρες εναλλάξ?
Μπορούμε με τρεις τρόπους
α) Ή να πακτώσουμε την βάση με το έδαφος.
β) Ή να πακτώσουμε το δώμα με το έδαφος.
γ) Ή να προ εντείνουμε το δώμα με το έδαφος στα πλαίσια της επαλληλίας ( στα πλαίσια αντοχής της κολόνας στην θλίψη και την κάμψη )Βασική προυπόθεση για να εφαρμόσουμε τους πάρα πάνω τρεις τρόπους, είναι οι κολόνες να μην είναι πολύ μικρές, ή να είναι αντί κολόνες τοιχία.
( μεγάλη διατομή κάτοψις σε μήκος )Γιατί οι κολόνες τοιχία πρέπει να έχουν μεγάλη διατομή κάτοψις σε μήκος ?
Για τέσσερις κύριους λόγους.α) Για να μην κάμπτονται εύκολα κατά την προένταση( όπως οι μικρές κολόνες )
β) Για να αντέχουν να διαχειρισθούν και τα στατικά φορτία, και τα πρόσθετα φορτία της προέντασης.
γ) Για να μπορούμε να κάνουμε εύκολα την κατάλληλη διαστασιολόγιση στην διατομή κάτοψις
Δηλαδή οι κολόνες τοιχία, μπορούμε σε ένα σχέδιο κάτοψις ενός φέροντος οργανισμού να τις τοποθετήσουμε κατά διαφορετικές διευθύνσεις, έτσι ώστε από όποια κατεύθυνση και αν έλθει ο σεισμός να φέρουν αντίσταση.
δ) Όταν η διατομή του τοιχίου κατά μήκος είναι μεγάλη, μπορούμε να το πακτώσουμε στα δύο άκρα του.Η πάκτωση ή προένταση των δύο άκρων του τοιχίου, είναι πολύ καλύτερη από ότι η πάκτωση μιας κολόνας στο κεντρικό σημείο της, γιατί...
κατά την ταλάντωση του τοιχίου στις πλάγιες φορτίσεις του σεισμού, το ένα άκρο του τοιχίου προσπαθεί να σηκώσει το άλλο άκρο του.Αν είναι πακτωμένο, ή καλύτερα προεντεταμένο στα δύο άκρα του, αυτή η τάση ανόδου της βάσης του τοιχίου δεν μπορεί να γίνει, διότι είναι προεντεταμένη με το έδαφος.
Οπότε αφού δεν μπορεί να ταλαντευτεί το τοιχίο, καταργούμε την ταλάντωση ( το κάνουμε άκαμπτο )
Οπότε καταργούμε στην πράξη.α) Την μετατόπιση του κάθετου άξονα της κολόνας, που συνεπάγεται σε κατάργηση ....
β) των ροπών στους κόμβους που προκαλούν τις τέμνουσες των κολονών και των δοκών.Με λίγα λόγια, το πακτωμένο ή προεντεταμένο τοιχίο, μπορεί μόνο του ( χωρίς την βοήθεια των κόμβων ) να παραλάβει τις οριζόντιες φορτίσεις του σεισμού, χωρίς να καταργεί και την πρόσθετη αντίσταση των κόμβων πάνω στις πλάγιες φορτίσεις.
Γνώμη του διεθνούς γραφείου διπλωμάτων ευρεσιτεχνίας για τον Υδραυλικό ελκυστήρα
Έχει πολύ θετική γνώμη για τον υδραυλικό ελκυστήρα.
Εξετάζετε από επιστήμονες του είδους.http://postimage.org/image/32vfj43z8/
http://postimage.org/image/2g4sfacsk/
http://postimage.org/image/332ou0y04/
http://postimage.org/image/33322bpyc/Oι συντελεστές που καθορίζουν την σεισμική συμπεριφορά των κατασκευών είναι πολυάριθμοι, και εν μέρη πιθανοτικού χαρακτήρα. ( Άγνωστη η διεύθυνση του σεισμού, άγνωστο το ακριβές περιεχόμενο των συχνοτήτων της σεισμικής διέγερσης, άγνωστη η διάρκειά της. ) Ακόμα η μέγιστες πιθανές επιταχύνσεις που δίδουν οι σεισμολόγοι, έχουν πιθανότητα υπέρβασης, μεγαλύτερης του σχεδιαζόμενου 10%
Για τον λόγο αυτό, και το δικό μου αντισεισμικό σύστημα, αλλά και το υπάρχων σχεδιαζόμενο του Ε.Α.Κ ( Ελληνικού αντισεισμικού κανονισμού ) είναι απλές θεωρίες. -
-
Ας πάρουμε δύο σπλαίσια τα οποία είναι ενωμένα στα άκρατους με δύο χιαστί.( όπως οι σιδεροσκαλωσιές των οικοδομών )
Λόγο των χιαστών τα δύο πλαίσια αποκτούν
α) Δομική οντότητα.
β) Ακαμψία.Δεν σταματούν όμως την ταλάντωση η οποία μπορεί να δημιουργήσει η επιτάχυνση.
Κατά την ταλάντωση που υφίσταται κατά τον σεισμό, ( κυρίως το ψιλό κτήριο με πολύ υψηλό κέντρο βάρους κατασκευασμένο από σιδεροκατασκευή,) το χιαστί ( Χ )διαμοιράζει καλύτερα τα καθοδικά φορτία του φέροντα από ότι ο κόμβος σχήματος ( Γ ).
Η δομική οντότητα των δύο πλαισίων που τους προσδίδει η ένωσή των με τα χιαστί, κατά την ταλάντωση, δεν καταπονείται όπως καταπονούνται οι κόμβοι σχήματος ( Γ ) από τα καθοδικά φορτία τις κατασκευής.
Ο λόγος είναι ο εξής
Κατά την ταλάντωση της σιδηροκατασκευής, όταν αυτή είναι δομικά άκαμπτη, δημιουργείται κενό στήριξης του ενός πλαισίου από το έδαφος, διότι το ένα πλαίσιο σηκώνει το άλλο εναλλάξ.
Οπότε κατά την χρονική περίοδο που το ένα πλαίσιο είναι αστήριχτο από το έδαφος, και το άλλο είναι στηριγμένο, υφίσταται μία ροπή στην κατασκευή λόγο των καθοδικών φορτίων.Στην περίπτωση των κόμβων ( Γ ) αυτή η ροπή ολοκλήρου του κτηρίου μετατρέπετε αυτόματα σε ροπή των κόμβων ( Γ ) η οποία δημιουργεί τέμνουσες στα άκρα του.
Στην περίπτωση των χιαστί ( Χ ) αυτή η ροπή μεταφέρεται διαγώνια από το άνω μέρος του αστήριχτου πλαισίου,στην κάτω γωνία του στηριγμένου πλαισίου, μέσο της μπάρας του χιαστή.
Αν η μπάρα του χιαστή αντέχει την κάμψη που του εξασκούν τα καθοδικά φορτία που μετατρέπονται σε ροπή, τότε κανένα πρόβλημα στην δομική οντότητα του κτηρίου.
Πάντως τα χιαστί ( Χ ) προσδίδουν καλύτερη δομική οντότητα στην κατασκευή από ότι προσδίδουν οι κόμβοι.
Φυσικά ο συνδυασμός και των δύο, τρόπων στήριξης είναι πιο ισχυρός.Το ερώτημα είναι αν μπορούμε να κάνουμε αυτή την σιδηροκατασκευή ακόμα πιο ισχυρή και από ότι αυτή είναι, με τον συνδυασμό των δύο τρόπων στήριξης ( Χ ) και ( Γ ) μαζί.
Ερώτηση
Υπάρχει και ένας άλλος τρόπος στήριξης, τον οποίο θα προσθέσουμε στους άλλους δύο τρόπους και οι τρις τρόποι μαζί να κατασκευάσουν το απόλυτο αντισεισμικό σύστημα των σιδηροκατασκευών?Απάντηση
Ναι υπάρχει.
Αναφέραμε ότι την ψαθυρή εργασία στις κατασκευές, την δημιουργούν οι ροπές, προερχόμενες από δύο άλλες φορτίσεις οι οποίες δημιουργούν την ταλάντωση και είναι.
α) επιτάχυνση, στην οποία αδρανή η κατασκευή και την σηκώνει μονόπλευρα.
β) τα καθοδικά αστήριχτα φορτία της κατασκευής,που δυμιουργούνται κατά την φάση μονομερούς ανόδου αυτής.Τα καθοδικά φορτία πάντα υπάρχουν.....οι ροπές όμως δεν υπάρχουν αν αυτά τα καθοδικά φορτία ισορροπούν με την αντίθετη φορά των δυνάμεων του εδάφους
Οι ροπές εμφανίζονται μόνο όταν τα καθοδικά φορτία είναι χωρίς την αντίθεση των δυνάμεων της βάσης. Δηλαδή κατά την ταλάντωση.Πακτώνοντας, ή προεντείνωντας την σιδηροκατασκευή με το έδαφος, καταργούμε στην ουσία τα αστήριχτα καθοδικά φορτία που δημιουργούν τις ροπές.
Συμπέρασμα.
Το αντισεισμικό σύστημα του ελκυστήρα, μπαίνει και σε σιδηροκατασκευές με χιαστί ( Χ ) και κόμβους ( Γ ) και είναι ο τρίτος τρόπος ο οποίος συνδυάζετε άψογα με τους άλλους δύο ώστε να κατασκευάσουμε την απόλυτη αντισεισμική οντότητα σιδηροκατασκευής, που συν των άλλων είναι και ελαφριά που συνεπάγεται σε μικρότερη αδράνεια,οπότε και λιγότερες φορτίσεις, και μεγαλύτερη αντοχή στις τέμνουσες που έχει μία σιδηροκατασκευή, από ότι έχει ένας σκελετός οπλισμένου σκυροδέματος. -
Θέλω αν ξέρετε και έχετε την ευχαρίστηση να με κατατοπίσετε για μία εργασία που θέλω να κάνω για το αντισεισμικό μου σύστημα.
Βασικά θέλω να κάνω πειράματα σε πολλαπλούς δομικούς φορείς, για να δοκιμάσω μοντέλα κατασκευασμένα κατά Ε.Α.Κ ( Ελληνικού αντισεισμικού κανονισμού ) και κατά δικής μου μεθόδου.
Οι σεισμικές βάσεις κοστίζουν πάρα πολλά χρήματα για να κάνω πειράματα σε πολλαπλούς δομικούς φορείς.Εγώ δεν τα διαθέτω.....αλλά δεν τα διαθέτει ούτε το Ελληνικό κράτος.
Σκέφτηκα λιπών να κατασκευάσω μόνος μου μία σεισμική βάση δοκιμών, στην οποία θα κάνω δοκιμές, πειράματα, ώστε να καταλήξω στο κατάλληλο μοντέλο στο οποίο αργότερα θα πραγματοποιηθεί και πείραμα σε πανεπιστήμιο με πραγματική σεισμική βάση προδιαγραφών.
Θέλω η κατασκευή αυτή να είναι κοντά στα πρότυπα των μεγάλων σεισμικών βάσεων.
Πρέπει να έχει βαθμό ελευθερίας έξη κινήσεων.
Μήπως ξέρετε ποιες είναι αυτές οι κινήσεις?Έχω στην σκέψη μου μία κατασκευή, που θα εκτελεί ταυτόχρονα δύο παλινδρομήσεις διαφορετικής κατεύθυνσης ( σε σχήμα σταυρωτής παλινδρόμησης +) και μάλιστα αυτές οι παλινδρομήσεις δεν θα είναι ακριβώς οριζόντιες, αλλά λίγο κυρτές, ώστε να προσομοιώνουν το κύμα love
Αυτός ο μηχανισμός πληρεί τους έξη βαθμούς ελευθερίας?
Βασικά αυτό που θέλω να κάνω είναι το εξής.
Θα κατασκευάσω μία βάση η οποία θα παλινδρομεί πάνω σε ισχυρά ρουλεμάν.
Αυτά τα ρουλεμάν θα εδράζονται πάνω σε δύο παράλληλους κυρτούς σιδηροδοκούς σχήματος ( Π ) συνδεδεμένοι μεταξύ τους.
Θα έχουν σχήμα ( Π ) για τον εξής λόγο.Όπως θα ξέρεις έχω ένα αντισεισμικό σύστημα το οποίον δημιουργεί προένταση στα κάθετα στοιχεία στίριξης της κατασκευής στα πλαίσια της επαλληλίας, μεταξύ δώματος και εδάφους κάνοντας αυτά τα δύο σώματα ένα σαν σάντουιτσ.
Οι σιδηροδοκοί λιπών θα έχουν σχήμα ( Π ) ώστε να συγκρατούν την βάση στα ανοδικά φορτία που δημιουργεί η ταλάντωση του μοντέλου.
Το μοντέλο ή δοκίμιο της δικής μου μεθόδου θα είναι βιδωμένο πάνω στην βάση με μία βίδα ( ντίζα ) η οποία θα διαπερνά ελεύθερη ( μέσα από σωλήνα ) τα κάθετα στοιχεία και θα βιδώνεται με κοχλία στο δώμα, και στο κάτω μέρος της βάσης.Η βίδα με τους κοχλίες θα προσομοιώνει τον μηχανισμό της ευρεσιτεχνίας.
Η σεισμική βάση θα προσομοιώνει το έδαφος.Στις σεισμικές βάσεις που ρώτησα να μου κάνουν την δοκιμή, είχαν πρόβλημα με τα ανοδικά φορτία της ταλάντωσης, και φοβόντουσαν μήπως τους ξηλώσουν τον μηχανισμό της βάσης.
Για τον λόγο αυτό η διατομή του σιδηροδοκού θα είναι σχήματος ( Π )
Τώρα γιατί οι σιδηροδοκοί θα είναι κυρτοί?
Θα είναι κυρτοί ώστε κατά την διαδρομή της βάσης να προσομοιώνουν ταυτόχρονα τις δύο ελεύθερες κινήσεις του χώρου.
α) Την οριζόντια κίνηση ( θετική και αρνητική )
β) Την κατακόρυφη κίνηση( θετική και αρνητική )Αυτή την κίνηση δεν εφαρμόζει το κύμα Love που είναι και το ποιο ψαθυρό για τις κατασκευές?
Τώρα πρέπει να δημιουργήσω και τις άλλες ελεύθερες κινήσεις στον χώρο οι οποίες είναι.
α) την άλλη μία οριζόντια η οποία θα είναι σταυροειδούς φοράς ως προς την άλλη οριζόντια κίνηση.
β) και τις 3 στροφές.Πως θα το κάνω αυτό?
Απλώς πάνω στους κυρτούς σιδηροδοκούς της πρώτης βάσης, ( στα άκρα τους ) θα τοποθετήσω πάλη ρουλεμάν με σταυροειδή φορά, που θα εδράζονται πάλη σε άλλους κυρτούς σιδηροδοκούς διατομής ( Π )
Κατ αυτόν τον τρόπο θα ταλαντεύονται συγχρόνως σταυροειδώς και οι δύο βάσεις δημιουργώντας ροπές περιστροφικές, οι οποίες θα προσομοιώνουν τις 3 στροφές στον χώρο, καθώς και την άλλη οριζόντια κίνηση,αλλά ταυτόχρονα και την κατακόρυφη.
Τώρα τι μηχανισμό θα τοποθετήσω ώστε
α)Να είναι φθηνός.
β)Να έχει ελεγχόμενη παλινδρομική διαδρομή.
γ)Να εκτελεί δύο διαφορετικές παλινδρομήσεις ταυτόχρονα.
δ)Να είναι αρκετά ισχυρός με μεγάλη αλλά μεταβαλλόμενη επιτάχυνση.
ε)Να μην επηρεάζετε ψαθυρά ο μηχανισμός από τις δύο διαφορετικής φοράς ταυτόχρονες παλινδρομήσεις ( εννοώ τους δύο στρόφαλους )Λύση
Ο μηχανισμός θα αποτελείτε από 4 ηλεκτρικά γερανάκια τοποθετημένα σταυροειδός.
http://www.bestprice.gr/cat/5594/lifting
α)Το παλάγκο θα είναι ο στρόφαλος. ( εύκαμπτα συρματόσχοινα για το πέρα δώθε )
β)Η ταλάντωση θα εφαρμόζετε από τους διακόπτες εναλλάξ, ελέγχοντας τον χρόνο παλινδρόμησης.
Τα τέσσερα μοτέρ θα τα χειρίζονται ταυτοχρόνως δύο άτομα.
Μπορεί και να μπει πρόγραμμα Η/Υ.Όλο το κόστος δεν θα περάσει τα 2000 ευρώ για μία βάση εμβαδού 1 τ.μ και με δυνατότητα έλξης φορτίου 3 τόνων, και με μεταβλητή επιτάχυνση ( μέσω ντίμερ ) 19 μ το λεπτό.
Φυσικά θα αφαιρεθεί ένα μικρό ηλεκτρικά θερμαινόμενο ελατήριο,που διεγείρει τα φρένα, και θα αντικατασταθεί με ένα μικρότερο ώστε να πιάνει πολύ λίγο φρένο ώστε...
να επιτρέπει την αντίθετη έλξη του συρματόσχοινου από το άλλο μοτέρ, αλλά και φρενάρει λίγο ώστε να μην ξετυλίγεται το συρματόσχοινο λόγο επιτάχυνσης του ράουλου.Πρόχειρο σχεδιάγραμμα της σεισμικής βάσης, δικής μου επινόησης.
-
http://www.geo.auth.gr/211/htm/lessons_fast.htm
Κανένας ούτε εδώ ούτε σε κανένα forum δεν πρόκειται να σου πει πως θα κάνεις μόνος σου προσομοίωση σεισμού.
Πρακτικά δεν μπορείς να κάνεις ....
Διάβασε λιγάκι παραπάνω για τα σεισμικά κύματα αν θέλεις εδώ :
http://www.geo.auth.gr/211/pdf/Mathima_ ... kymata.pdf
Κρατώντας πάντα στο μυαλό σου ότι αυτά είναι πανεπιστημιακές σημειώσεις - διαφάνειες και δεν αποτελούν ούτε το 1% της σεισμολογίας
-
Ο χρήστης jtblaster έγραψε:
http://www.geo.auth.gr/211/htm/lessons_fast.htmΚανένας ούτε εδώ ούτε σε κανένα forum δεν πρόκειται να σου πει πως θα κάνεις μόνος σου προσομοίωση σεισμού.
Πρακτικά δεν μπορείς να κάνεις ....
Διάβασε λιγάκι παραπάνω για τα σεισμικά κύματα αν θέλεις εδώ :
http://www.geo.auth.gr/211/pdf/Mathima_ ... kymata.pdf
Κρατώντας πάντα στο μυαλό σου ότι αυτά είναι πανεπιστημιακές σημειώσεις - διαφάνειες και δεν αποτελούν ούτε το 1% της σεισμολογίας
Φίλε jtblaster ευχαριστώ που απάντησες, και για το σύνδεσμο που μου έδωσες.
Σίγουρα κανείς δεν μπορεί να προσομοιώσει έναν σεισμό.
Ακόμα και οι πολύ μεγάλες σεισμικές βάσεις.
Μπορώ όμως να κάνω κάτι άλλο....,να υπερβώ τις φορτίσεις ενός σεισμού, πάρα πάνω από τον μεγαλύτερο σεισμό που έχει γίνει ποτέ.Εμένα βασικά δεν με ενδιαφέρει αν ο σεισμός είναι 5,7
η 15 Ρίχτερ.
Αυτό που με ενδιαφέρει είναι αν οι κατασκευές οι πεπατημένες αντέχουν περισσότερο ή λιγότερο από την μέθοδο την δική μου. ( μέθοδο κατασκευής.)Αν δύο ίδιοι φορείς ( σε διαστασιολόγιση ) δοκιμαστούν με την μέθοδο την δική μου ο ένας, και ο δεύτερος με την μέθοδο που εφαρμόζει ο Ελληνικός αντισεισμικός κανονισμός, και ο ένας φορέας είναι περισσότερο ψαθυρός από τον άλλο, αυτό κάτι θα δείξει.
Ακόμα και με την δική μου σεισμική βάση.
Όπως δείχνει και αυτό το βίντεο πείραμα.
Youtube VideoΔες αυτό το βίντεο.
Είναι στην Ελληνική διάλεκτο, αλλά
Δείχνει τρεις διαφορετικούς φέροντες οικοδομής.
α) Ο πρώτος φέροντας σκελετός οικοδομής είναι ελαφρής.
β) Ο δεύτερος φέροντας σκελετός οικοδομής είναι βαρείς.
γ) Ο τρίτος, bearing φραμε είναι βιδωμένος με το έδαφος
Δες τους κόμβους πως αντιδρούν όταν έχουμε σεισμό.Έτσι και αλιώς ασχολούνται με το αντισεισμικό μου σύστημα και στο Μετσόβιο δύο χρόνια
http://www.multiforums.gr/sciences/view ... &pid=67008 -
Έχω στην κατοχή μου μία ευρεσιτεχνία ενός αντισεισμικού συστήματος δομικών κατασκευών, στο οποίο πραγματοποιήθηκε εφαρμοσμένη έρευνα του συστήματος πάνω σε πεπερασμένα στοιχεία Η/Υ στο Μετσόβιο Πολυτεχνείο και συγκεκριμένα στο εργαστήριο στατικών και αντισεισμικών ερευνών του τμήματος πολιτικών μηχανικών από τον κύριο καθηγητή Μ.Παπαδρακάκη.
Τα αποτελέσματα της έρευνας ήταν θετικά ,και απέδειξαν την αποτελεσματικότητα του συστήματος.Συγκεκριμένα το πρωτοποριακό αυτό σύστημα βελτιώνει την αντοχή των κατασκευών ως προς τις φορτίσεις του σεισμού ,το λιγότερο κατα 30,9% από την ήδη υπάρχουσα μέθοδο κατασκευών.Το σύστημα τοποθετήθηκε σε εννέα κολώνες ( στοιχεία ) σε ένα τριόροφο και ένα πενταόροφο φορέα με κολώνες διαστάσεων 0,30Χ0,40Χ 3,00 m.Ωστόσο πρέπει να γίνουν περισσότερα πειράματα σε διάφορους φορείς και περισσότερους ορόφους ( των τριών και πέντε που προσομοιώθηκαν )για να αποδειχθεί περεταίρω η χρησιμότητα του αντισεισμικού συστήματος.
Πιστεύω ότι αν τοποθετηθεί σωστά σε διαφορετικούς φορείς,( π.χ αντί σε κολώνες να τοποθετηθεί σε τοιχία με διπλή προένταση, ή ακόμα καλύτερα σε προκατασκευασμένα, ή φρεάτια )θα αυξήσει την αντοχή των κατασκευών κατά 100% με ότι αυτό σημαίνει ως προς την ασφάλεια, την οικονομικοτεχνική μελέτη , καθώς και το κόστος στις εμφανιζόμενες επισκευές μετά τον σεισμό
Τα πρώτα αποτελέσματα της προσομοίωσης ( σε βαθμό προκαταρκτικής μελέτης ) στο συνημμένο.
http://paterakhs.gr/downloads/Draftreport.pdfΆρθρο εδώ http://www.growing.gr/
-
εχεις μιλησει καθολου με το iisee της ιαπωνιας?(αν οχι γιατι δεν κανεις και καμια προσπαθεια κατα κει αυτοι ακουνε πολυ καλυτερα απο τα βουλωμενα αυτια εδω..)
-
Και εδώ ακούνε το ίδιο καλά με το εξωτερικό.
Χρήμα χρειάζεται, και δημοσιεύσεις σε επιστημονικά περιοδικά με κριτές από τους καθηγητές.
Μετά θα πάρει φωτιά....Στο επόμενο τεύχος του επιστημονικού περιοδικού ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ http://www.metalkat.gr/ θα γράψω άρθρο 8 σελίδων με φωτογραφίες. -
Αυτό το άρθρο θα δημοσιευθεί.
Το Απόλυτο αντισεισμικό σύστημα
Μεταλλικών,
Σύμμικτων,
και άλλων δομικών έργων
Ιωάννης Λυμπέρης
Εργοδηγός Δομικών Εργων.
Σύντομη περιγραφή της εφεύρεσης
Ο υδραυλικός ελκυστήρας δομικών έργων της παρούσας
εφεύρεσης καθώς και ο τρόπος κατασκευής των δομικών
κατασκευών χρησιμοποιώντας τον υδραυλικό ελκυστήρα της
παρούσας εφεύρεσης έχουν ως κύριο σκοπό την ελαχιστοποί-
ηση των προβλημάτων που σχετίζονται με την ασφάλεια των
δομικών κατασκευών στην περίπτωση αντιμετώπισης φυσι-
κών φαινομένων όπως είναι ο σεισμός, οι ανεμοστρόβιλοι
και οι πολύ ισχυροί πλευρικοί άνεμοι. Σύμφωνα με την εφεύ-
ρεση αυτό επιτυγχάνεται με μια συνεχή προένταση (έλξη) της
δομικής κατασκευής προς το έδαφος και του εδάφους προς
την κατασκευή, κάνοντας αυτά τα δύο μέρη ένα σώμα. Αυτή τη
δύναμη προέντασης την εφαρμόζει ο μηχανισμός του υδραυ-
λικού ελκυστήραδομικών έργων. Αυτός αποτελείται από ένα
συρματόσχοινο το οποίο διαπερνά ελεύθερο στο κέντρο τα κά-
θετα στοιχεία στήριξης της δομικής κατασκευής, καθώς και το
μήκος μιας γεώτρησης, κάτω απ’ αυτά. Στο κάτω άκρο του είναι
πακτωμένο με ένα μηχανισμό τύπου άγκυρας που πακτώνεται
στο ύψος της θεμελίωσης στα πρανή μιάς γεώτρησης και δεν
μπορεί να ανέλθει. Στο επάνω μέρος του, το συρματόσχοινο,
είναι πάλι πακτωμένο με ένα υδραυλικό μηχανισμό έλξης ο
οποίος το έλκει με μία συνεχή δύναμη ανόδου. Η ασκούμενη
έλξη στο συρματόσχοινο από τον υδραυλικό μηχανισμό και η
αντίδραση σ’ αυτήν την έλξη που προέρχεται από την πακτω-
μένη άγκυρα στο άλλο άκρο του γεννά την επιθυμητή θλίψη
στο δομικό έργο.
Άρθρο
2 I METΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ | τεύχοs 1ο 2012
ΕΥΕΡΓΕΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΗΣ ΠΡΟΕΝΤΑΣΗΣ
Κατά τη διέγερση του σεισμού ο φέρων οργανισμός (σκελετός
οικοδομής μεταλλικός, σύμμικτος, ή από οπλισμένο σκυρό-
δεμα) με τη σημερινή μέθοδο κατασκευής παρουσιάζει προ-
βλήματα τα οποία ευελπιστώ να λύσω με την ευρεσιτεχνία
Ποια είναι αυτά:
Τέμνουσες. Τι είναι και που υφίστανται πάνω στον
σκελετό της οικοδομής.
Οι τέμνουσες είναι δύο αντίθετες δυνάμεις, των οποίων οι
άξονες τους είναι παράλληλοι και περνούν ο ένας πλησίον του
άλλου, όπως π.χστο ψαλίδι.
Στον σκελετό οι τέμνουσες υφίστανται σε πολλά σημεία του.
Το κυριότερο σημείο που οι τέμνουσες είναι ψαθυρές είναι στο
κάτω μέρος της κολώνας του ισογείου, κοντά στο σημείο που
ενώνεταιμε τη βάση.
Ερώτηση: Γιατί σε εκείνο το σημείο οι τέμνουσες είναι πιο
ψαθυρές?
Απάντηση...Διότι ο σεισμός έχει μια φορά επιτάχυνσηςπου τη μεταδίνει
στη βάση της κολώνας, διότι αυτή είναι θαμμένη στο έδαφος,
και το έδαφος την αναγκάζει να κινηθεί στον ρυθμό της επιτά-
χυνσης και φοράς του σεισμού.
Ο σκελετός αντιδρά σε αυτήν την κίνηση, λόγω αδράνειας και
στο κάτω σημείο της κολώναςτου ισογείουδημιουργείται η τέμνουσα.
Το κάτω σημείο της κολώνας του ισογείου είναι πιο ψαθυρό,
για τρεις κύριους λόγους.- διότι έχει να διαχειριστεί περισσότερα στατικά φορτία του
φέροντος οργανισμού, από ότι έχουν να διαχειρισθούν οι άλλες κολώ-
νες των πάνω ορόφων, - διότι έχει να διαχειριστεί περισσότερες οριζόντιες φορτί-
σεις του σεισμού - διότι δεν υπάρχει καθόλου ελαστικότητα στο κάτω σημείο
της κολώνας του ισογείου, η οποία χρησιμεύει για την
απορρόφηση της ενέργειας του σεισμού, ενώ αυτή η ελα-
στικότητα υπάρχει στις πάνω κολώνες.
Οπότε για τους τρεις λόγους που ανέφερα συμπεραίνουμε ότι
οι τέμνουσες σε αυτές τις κολώνες του ισογείου είναι μεγα-
λύτερες από ότι είναι στις κολώνες των πάνω ορόφων, διότι
διαχειρίζονται μεγαλύτερες οριζόντιες και κάθετες φορτίσεις
κατά τη διέγερση του σεισμού.
Τι κάνει η ευρεσιτεχνία για να λύσει το πρόβλημα της αστοχίας
που προκαλούν οι τέμνουσες στις κολώνες του ισογείου;
Ο μηχανισμός του υδραυλικού ελκυστήρα εφαρμόζει κάθετη
προένταση μεταξύ εδάφους - δώματος. Ξέρουμε ότι η προέντα-
ση αυτή στα πλαίσια της επαλληλίας (μέσα στο πλαίσιο αντο-
χής των κάθετων στοιχείων) έχει πολύ θετικά αποτελέσματα,
καθώς βελτιώνει τις τροχιές του λοξού εφελκυσμού.
Από την άλλη έχουμε καιένα άλλο καλό... τη μειωμένη ρηγμά-
τωση λόγω θλίψης, κάτι που αυξάνει την ενεργό διατομή και
αυξάνει και τη δυσκαμψία της κατασκευής, οπότε και τις παρα-
μορφώσεις που προκαλούν αστοχία.
Oι συντελεστές που καθορίζουν τη σεισμική συμπεριφορά
των κατασκευών είναι πολυάριθμοι, και εν μέρει πιθανοτικού
χαρακτήρα. (Άγνωστη η διεύθυνση του σεισμού, άγνωστο
το ακριβές περιεχόμενο των συχνοτήτων της σεισμικής διέ-
γερσης, άγνωστη η διάρκειά της.) Ακόμα η μέγιστες πιθανές
επιταχύνσεις που δίδουν οι σεισμολόγοι, έχουν πιθανότητα
υπέρβασης, μεγαλύτερης του σχεδιαζόμενου 10%.
Ο συσχετισμός των ποσοτήτων (αν μπορούμε να το δούμε
έτσι) «αδρανειακές εντάσεις - δυνάμεις απόσβεσης - ελαστικές
δυνάμεις - δυναμικά χαρακτηριστικά κατασκευής - αλληλεπί-
δραση εδάφους κατασκευής - επιβαλλόμενη κίνηση εδάφους»
είναι μη γραμμικής κατεύθυνσης, και ανεξερεύνητες στη δυ-
ναμική των κατασκευών, με μη προφανές περιεχόμενο.
Συμπέρασμα
Η προένταση (γενικά η θλίψη) αυξάνει την ικανότητα των
κάθετων στοιχείων ως προς τις τέμνουσες, που προκαλούν οι
φορτίσεις του σεισμού.
Εκτός από τις τέμνουσες που αναφέραμε παραπάνω, που
κατά κύριο λόγο εφαρμόζονται στα στοιχεία του ισογείου, οι
τέμνουσες εμφανίζονται και σε άλλα σημεία του φέροντος ορ-
γανισμού, όπως στους κόμβους (γωνίες) που σχηματίζονται στο σημείο
ένωσης, της κολώνας με τη δοκό, ή της δοκού με την πλάκα,
ή της βάσης με την κολώνα, ή της πεδιλοδοκού με τη βάση, ή
της κοιτόστρωσης με την κολώνα.
Ποια είναι η αιτία που προκαλεί πρόσθετες τέμνουσες στους
κόμβους που αναφέραμε;
Ο πρόσθετος λόγος είναι η ταλάντωση, που επέρχεται στον
φέροντα σκελετό (κυρίως στον πολύ ψηλό σκελετό ) κατά τον
σεισμό.
Τι προβλήματα δημιουργεί η ταλάντωση στο κτήριο;
Αυτό είναι ένα μεγάλο ερώτημα, που για να απαντηθεί πρέπει
πρώτα να πούμε ότι η συχνότητα του κτηρίου αν είναι ίδια με
τη συχνότητα του σεισμού, τότε έχουμε συντονισμό
που δημιουργεί τη μεγάλη ταλάντωση.
ΜΙ Α ΑΛΛΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗ ΣΕΙΣΜΙΚΗ
ΜΗΧΑΝΙΚΗ
Τι παθαίνει ο σκελετός της οικοδομής κατά την ταλάντωση
προερχόμενη από τις φορτίσεις του σεισμού και του αέρα;
Ας εξετάσουμε απλά, βάσει των νόμων της φυσικής, τα φορτία
που δέχεται ο σκελετός της οικοδομής κατά τη διέγερση του
σεισμού.
α) Αδράνεια.
Στα σώματα 'αρέσει' να εξακολουθούν να κάνουν αυτό που
ήδη κάνουν.
Αν είναι ακίνητα, τους 'αρέσει' να μένουν ακίνητα.
Αν κινούνται τους 'αρέσει' να συνεχίζουν να κινούνται.
Συμπέρασμα. Όταν ο σεισμός κινείται κατά μία κατεύθυνση,
ο σκελετός της οικοδομής αντιδρά σε αυτήν την κίνηση, λόγω
της αδράνειας.
Αυτή η αντίδραση δημιουργεί τις τέμνουσες του ισογείου.
Αυτή η αντίδραση είναι που προκαλεί και την ταλάντωση, η
οποία εξαρτάται από την ιδιοσυχνότητα του σεισμού και του
εδάφους.
Αυτή η ταλάντωση τείνει να ανατρέψει και τον φέροντα σκελε-
τό με πολύ ψηλό κέντρο βάρους.
Δηλαδή ο φέρων οργανισμός (κολώνες, δοκάρια, πλάκες) σαν δομική
οντότητα που του την προσφέρουν οι κόμβοι (γωνίες) αντιδρά
σε αυτή την ταλάντωση στους κόμβους.
Τι φορτία δέχονται οι κόμβοι κατά τη διέγερση του σεισμού?
Τα κύρια φορτία που δέχονται είναι δύο:
α) Την αδρανειακή δύναμη λόγω της μάζας (της πλάκας, των πραγμάτων, της
τοιχοποιίας), που ονομάζουμε οριζόντιες φορτίσεις.
β) Τα φορτία της κατασκευής (το ίδιο βάρος της πλάκας των
πραγμάτων, της τοιχοποιίας) τα οποία ονομάζουμε κάθετες
φορτίσεις.
Αςεξετάσουμε τώρα πως ενεργούν πάνω στα στοιχεία που
αποτελούν τον κόμβο, οι οριζόντιες και οι κάθετες φορτίσεις.
Ένας κόμβος με γωνία 90 μοιρών για να παραμείνει ακέραιος,
πρέπει κατά τον σεισμό, να διατηρήσει την γωνία του [κόμβου
(Γ)] στις ίδιες μοίρες.
Η ταλάντωση όμως κατά τον σεισμό, όπως ξέρουμε, αλλάζει
την κλίση της κολώνας, και από κατακόρυφος που ήταν ο άξο-
νάς της, αλλάζει μερικές μοίρες (εναλλάξ του κάθετου άξονα)
Η κολώνα κατά τη φάση που η κλίση της αλλάζει, αναγκάζει
μέσω του κόμβου που την ενώνει με τα άλλα στοιχεία τη δοκό
να μετακινήσει και αυτή τον οριζόντιο άξονα τηςκατά μερικές μοί-
ρες προς τα πάνω.
Εδώ υπάρχει το πρόβλημα του φέροντα οργανισμού κατά την ταλάντωση,
διότι τη στιγμή που η δοκός δέχεται φορτία με τάση ανόδου
από την κολώνα, τότε έρχεται σε αντίθεση με τα καθοδικά
φορτία του βάρους του κτηρίου.
Τα καθοδικά φορτία υπερνικούν τα φορτία ανόδου της δοκού,
με αποτέλεσμα η δοκός να αναγκάζεται να παραμείνει οριζό-
ντια.
Η κολώνα όμως, δεν παραμένει οριζόντια (αλλάζει κατά μερικές
μοίρες ο κάθετος άξονάς της).
Το αποτέλεσμα είναι ο κόμβος που προσδίδει δομική οντότητα
στα στοιχεία αυτά να τείνει από 90 μοίρες που είναι, να μεταβάλλεται
εναλλάξ κατά την ταλάντωση,και να καταπονείται με τέμνουσες.
Ο κόμβος όμως είναι πολύ άκαμπτος και γερός, και αντί να
αλλάξει μοίρες, μεταδίδει τα καθοδικά και οριζόντια φορτία στις
ελαστικές διατομές των στοιχείων (διατομή κάτοψηςκολώνας,
διατομή δοκού και πλάκας) δημιουργώντας ροπές και αυτές
δημιουργούν τις τέμνουσες.
Οπότε στην πράξη δεν σπάει ο κόμβος, αλλά το πιο ψαθυρό
στοιχείο λίγο πιο πέρα από τον κόμβο.
Την ψαθυρότητα τη δημιουργεί η αντίθεση των φορτίων, στο
λαιμό της κολώνας και της δοκού, δημιουργώντας τις τέμνου-
σες.
Πιο είναι πιο ψαθυρό στοιχείο, η κολώνα ή η δοκός?
Φυσικά είναι η κολώνα, διότι αυτή έχει μικρότερη διατομή από
τη διατομή της δοκού, διότι η διατομή της δοκού είναι ένα
σώμα ακέραιο με τη διατομή της πλάκας, και οι δύο μαζί
υπερτερούν της διατομής της κολώνας.
Και όπως ξέρουμε, μεγαλύτερη διατομή σημαίνει περισσότερη αντοχή
ως προς τις τέμνουσες.
Από ότι αναφέραμε πιο πάνω, οι κύριες φορτίσεις που είναι
ψαθυρές για τον φέροντα οργανισμό κατά τη διέγερση του
σεισμού, είναι δύο.
α) Οριζόντιες φορτίσεις (προερχόμενες από την αδράνεια που
σε συνδυασμό και με την ιδιοσυχνότητα προκαλεί την τα-
λάντωση)
β) Κάθετες φορτίσεις (προερχόμενες από το ίδιο βάρος του
φέροντα οργανισμού, της τοιχοποιίας, και των πραγμάτων)
Ακόμα αναφέραμε πιο πάνω, ότι η κολώνα κατά τον σεισμό,
μετατοπίζει τον κάθετο άξονά της πότε δεξιά πότε αριστερά,
ενώ η δοκός διατηρεί τον οριζόντιο άξονά της λόγο των κάθε-
των φορτίσεων.
Συμπέρασμα
Αν μπορέσουμε να σταματήσουμε τον κάθετο άξονα της κο-
λώνας να αλλάζει μοίρες εναλλάξ, (λόγω πλάγιων φορτίσεων)
τότε δεν θα υπάρχουν τέμνουσες στα στοιχεία της κολώνας και
της δοκού, διότι ο κόμβος θα παραμείνει στις90 μοίρες.
Πως μπορούμε να σταματήσουμε τον κάθετο άξονα της κολώ-
νας να αλλάζει μοίρες εναλλάξ?
Μπορούμε με τρεις τρόπους:
α) Ή να πακτώσουμε τη βάση με το έδαφος.
β) Ή να πακτώσουμε το δώμα με το έδαφος.
γ) Ή να προεντείνουμε το δώμα με το έδαφος στα πλαίσια της
επαλληλίας (στα πλαίσια αντοχής της κολώνας στη θλίψη
και την κάμψη)
Βασική προυπόθεση για να εφαρμόσουμε τους παραπάνω
τρεις τρόπους, είναι οι κολώνες να μην είναι πολύ μικρές, ή
αντί για κολώνεςνα γίνουν τοιχία.
(μεγάλη διατομή κάτοψης σε μήκος)
Γιατί οι κολώνες-τοιχία πρέπει να έχουν μεγάλη διατομή κάτο-
ψης σε μήκος?
Για τέσσερις κύριους λόγους.
α) Για να μην κάμπτονται εύκολα κατά την προένταση (όπως
οι μικρές κολώνες)
β) Για να αντέχουν να διαχειριστούν και τα στατικά φορτία,
και τα πρόσθετα φορτία της προέντασης.
γ) Για να μπορούμε να κάνουμε εύκολα την κατάλληλη διαστα-
σιολόγησηστη διατομή κάτοψης.
Δηλαδή τιςκολώνες-τοιχία, μπορούμε σε ένα σχέδιο κάτο-
ψης ενός φέροντος οργανισμού να τις τοποθετήσουμε κατά
διαφορετικές διευθύνσεις, έτσι ώστε από όποια κατεύθυν-
ση και αν έλθει ο σεισμός να φέρουν αντίσταση.
δ) Όταν η διατομή του τοιχίου κατά μήκος είναι μεγάλη, μπο-
ρούμε να το πακτώσουμε στα δύο άκρα του.
Η πάκτωση ή προένταση των δύο άκρων του τοιχίου, είναι
πολύ καλύτερη από ότι η πάκτωση μιας κολώνας στο κεντρικό
σημείο της, γιατί κατά την ταλάντωση του τοιχίου στις πλάγι-
ες φορτίσεις του σεισμού, το ένα άκρο του τοιχίου προσπαθεί
να σηκώσει το άλλο άκρο του.
Αν είναι πακτωμένο, ή καλύτερα προεντεταμένο στα δύο άκρα
του, αυτή η τάση ανόδου της βάσης του τοιχίου δεν μπορεί να
γίνει, διότι είναι προεντεταμένη με το έδαφος.
Οπότε αφού δεν μπορεί να ταλαντωθεί το τοιχίο, καταργούμε
την ταλάντωση (το κάνουμε άκαμπτο).
Οπότε καταργούμε στην πράξη:
α) Τη μετατόπιση του κάθετου άξονα της κολώνας, που συνε-
πάγεταιτην κατάργηση…
β) των ροπών στους κόμβους που προκαλούν τις τέμνουσες
των κολωνών και των δοκών,καθώς και τα λοξά βέλη (λοξές ρωγμές)
Με λίγα λόγια, το πακτωμένο ή προεντεταμένο τοιχίο, μπορεί
μόνο του (χωρίς τη βοήθεια των κόμβων) να παραλάβει τις
οριζόντιες φορτίσεις του σεισμού, χωρίς να καταργεί και την
πρόσθετη αντίσταση των κόμβων πάνω στις πλάγιες φορτί-
σεις.
Άρθρο
τεύχοs 1ο 2012 | METΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ | 5__
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
Αν πάρουμε δύο πλαίσιατα οποία είναι ενωμένα στα άκρα
τους με δύο χιαστί συνδέσμους(όπως οι σιδεροσκαλωσιές των οικοδο-
μών)
Ταδύο πλαίσια αποκτούν
α) Δομική οντότητα.
β) Ακαμψία.
Δεν σταματούν όμως την ταλάντωση την οποίαμπορεί να δημι-
ουργήσει η επιτάχυνση του σεισμού.
Κατά την ταλάντωση που υφίσταται κατά τον σεισμό, (κυρίως
το ψηλό κτήριο με πολύ υψηλό κέντρο βάρους κατασκευασμέ-
νο από σιδεροκατασκευή) το χιαστί (Χ)διαμοιράζει καλύτερα
τα καθοδικά φορτία του φέροντα οργανισμού από ότι ο κόμβος σχήματος
(Γ).
Η δομική οντότητα των δύο πλαισίων που τους προσδίδει η
ένωσή τους με τα χιαστί, κατά την ταλάντωση, δεν καταπονείται
όπως καταπονούνται οι κόμβοι σχήματος (Γ) από τα καθοδικά
φορτία της κατασκευής.
Ο λόγος είναι ο εξής:
Κατά την ταλάντωση της σιδηροκατασκευής όταν αυτή είναι
δομικά άκαμπτη, δημιουργείται κενό στήριξης του ενός πλαι-
σίου από το έδαφος, διότι το ένα πλαίσιο σηκώνει το άλλο
εναλλάξ.
Οπότε κατά τη χρονική περίοδοτης ταλάντωσης της σκαλωσιάς, όπου το ένα πλαίσιο είναι
αστήρικτο από το έδαφος, και το άλλο είναι στηριγμένοσε αυτό, υφί-
σταται μία ροπή στους κόμβουςτηςκατασκευής λόγω των καθοδικών φορτί-
ων, των προερχόμενων από το βάρος της κατασκευής.
Στην περίπτωση των κόμβων (Γ) αυτή η ροπή ολόκληρου
του κτηρίου μετατρέπεται αυτόματα σε ροπή των κόμβων (Γ) η
οποία δημιουργεί τέμνουσες στα άκρα του.
Στην περίπτωση των χιαστί (Χ) αυτή η ροπή μεταφέρεται δια-
γώνια από το άνω μέρος του αστήριχτου πλαισίου,στην κάτω
γωνία του στηριγμένου πλαισίου, μέσω της μπάρας του χιαστί.
Αν η μπάρα του χιαστί αντέχει την κάμψη που του εξασκούν
τα καθοδικά φορτία που μετατρέπονται σε ροπή, τότε δεν υπάρχει
κανένα πρόβλημα στη δομική οντότητα του κτηρίου.
Πάντως τα χιαστί (Χ) προσδίδουν καλύτερη δομική οντότητα
στην κατασκευή από ότι προσδίδουν οι κόμβοι.
Φυσικά ο συνδυασμός και των δύο, τρόπων στήριξης (Χ) και (Γ)είναι
πιο ισχυρός.
Το ερώτημα είναι αν μπορούμε να κάνουμε αυτή την σιδηρο-
κατασκευή ακόμα πιο ισχυρή από ότι αυτή είναι, με τον
συνδυασμό των δύο τρόπων στήριξης (Χ) και (Γ) μαζί.
Ερώτηση
Υπάρχει καιάλλος τρόπος στήριξης, τον οποίο μπορούμε να προ-
σθέσουμε στους άλλους δύο τρόπους και οι τρεις τρόποι μαζί
να κατασκευάσουν το απόλυτο αντισεισμικό σύστημα των σι-
δηροκατασκευών;
Απάντηση
Ναι υπάρχει.
Αναφέραμε ότι την ψαθυρή αστοχίαστις κατασκευές, τη δη-
μιουργούν οι ροπές, προερχόμενες από δύο διασταυρώμενες φορτίσεις
κατάτην ταλάντωση οι οποίες είναι:
α)Οι αδρανειακές εντάσεις
β) τα καθοδικά αστήριχτα φορτία της κατασκευής,που δημι-
ουργούνται κατά τη φάση μονομερούς ανόδου αυτής.
Τα καθοδικά φορτία πάντα υπάρχουν... οι ροπές όμως δεν
υπάρχουν αν αυτά τα καθοδικά φορτία ισορροπούν με την
αντίθετη φορά των δυνάμεων του εδάφους
Οι ροπές εμφανίζονται μόνο όταν τα καθοδικά φορτία είναι
χωρίς την αντίδραση των δυνάμεων της βάσης. Δηλαδή κατά
την ταλάντωση.
Πακτώνοντας, ή προεντείνοντας τη σιδηροκατασκευή με το
έδαφος, καταργούμε στην ουσία τα αστήριχτα καθοδικά φορ-
τία που δημιουργούν τις ροπέςστους κόμβους.
Συμπέρασμα
H αντισεισμική μέθοδος κατασκευών καθώς και ο μηχανισμός του ελκυστήρα(Seismicstop)εφαρμόζεταικαιτοποθετείται
σε σιδηροκατασκευές με χιαστί (Χ) και κόμβους (Γ) και είναι ο
τρίτος τρόπος ο οποίος συνδυάζεται άψογα με τους άλλους δύο
ώστε να κατασκευάσουμε την απόλυτη αντισεισμική οντότη-
τα σιδηροκατασκευής, που πέραν των άλλων είναι και ελαφριά
που συνεπάγεται μικρότερη αδράνεια,οπότε και λιγότερες
φορτίσεις, και μεγαλύτερη αντοχή στις τέμνουσες που έχει
μία σιδηροκατασκευή, από ότι έχει ένας σκελετός οπλισμένου
σκυροδέματος.
Άρθρο
6 I METΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ | τεύχοs 1ο 2012
Η ευρεσιτεχνία μπορεί να χρησιμοποιηθεί και σαν προεντεταμένο αγκύριο, για τη βελτίωση και τη συγκράτηση των πρανών του εδάφους.
Π.Χ http://postimage.org/image/29l3p1xpg/
Γενικά αντικαθιστά όλα τα είδη πασσάλων προσφέροντας καλύτερη πρόσφυση με το έδαφος λόγω υδραυλικής πίεσης.
Γενικά είναι ένας μηχανισμός ο οποίος πακτώνεται στα πρανή της γεώτρησης, λόγωτων θλιπτικών δυνάμεων που εξασκεί πλάγιο αξονικά αυτής, και κατ' αυτόν τον τρόπο μπορεί να δεχθεί φορτίσεις κάθετες, και ανοδικές, προστατεύοντας τις κατασκευές από την καθίζηση και την ταλάντωση.
Μπορεί να τοποθετηθεί τόσο σε υπό κατασκευή, όσο και σε υφιστάμενες κατασκευές διάφορων φορέων όπως είναι όλοι οι φέροντες οργανισμοί κτηρίων, γέφυρες, φράγματα, κ.λ.π.
Χρησιμεύει και για την προστασία των ελαφριών κατασκευών από τους ανεμοστρόβιλους που πλήττουν κυρίως την Αμερική, αλλά και την προστασία γενικά των μεγάλων κατασκευών, από τις φορτίσεις του αέρα.
Η εφαρμοσμένη τεχνολογία σήμερα απλώς εδράζει την κατασκευή στο έδαφος.
Η ευρεσιτεχνία την ενώνει με το έδαφος, (μέσω προέντασης) κάνοντας αυτά τα δύο ένα, (σαν σάντουιτς)
Αυτό γίνεται πρώτη φορά παγκοσμίως.
Για μένα αυτή η ένωση της κατασκευής με το έδαφος, έχει ευεργετικά αποτελέσματα διότι εκτός των αναφερθέντων καλών χρησιμεύει ακόμα για να....
α) Εξασφαλίζει δομική οντότητα εδάφους κατασκευής.
β) Κατά τη διέγερση του σεισμού,αλλάζει ευεργετικά την κατεύθυνση στις φορτίσεις και στις τέμνουσες, και τις κατευθύνει κάθετα του στοιχείου, όπου η διατομή του είναι μεγάλη και ισχυρή.
γ) Οι δυνάμεις απόσβεσης είναι υδραυλικές
δ) Απαλείφει τη διαφορά φάσης εδάφους-κατασκευής
ε) Απαλείφει την διαφορά φάσης των ορόφων
ζ) Συνεργάζεται με τα εφέδρανα, ώστε να εξασφαλίσει οριζόντια και κάθετη σεισμική μόνωση.
η) Αυξάνει τα δυναμικά χαρακτηριστικά της κατασκευής.
θ) χαμηλώνει την πιθανότητα της ιδιοσυχνότητας στις κατασκευές.
ι) Λόγω υδραυλικής πίεσης που εξασκεί ο μηχανισμός του ελκυστήρα, κρατάει πάντα τον τένοντα τανυσμένο, διορθώνοντας αυτόματα κατ' αυτόν τον τρόπο την έρπη του χάλυβα, όπου υφίσταται κατά τη μακροπρόθεσμη προέντασή του, και διορθώνει αυτόματα την ένταση πάκτωσης της άγκυρας με τα πρανή της γεώτρησης, ακόμα και όταν αυτά υποχωρήσουν λόγω χαλαρότητας των πρανών της γεώτρησης.
Το σύστημα είναι υπό αριθμητική διερεύνηση (σε επίπεδο υπολογιστικής προσομοίωσης) από το Εργαστήριο Στατικής και Αντισεισμικών Ερευνών του Ε.Μ.Π, με τα πρώτα αποτελέσματα να είναι αρκετά ενθαρρυντικά.
Περισσότερα στην ιστοσελίδα http://www.antiseismic-systems.com
- διότι έχει να διαχειριστεί περισσότερα στατικά φορτία του
-
Φθίνουσα αρμονική ταλάντωση των κατασκευών μέσω του υδραυλικού συστήματος της ευρεσιτεχνίας.
ΒΙΝΤΕΟ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ http://www.youtube.com/watch?v=KPaNZcHBKRI
Επειδή η σεισμική φόρτιση είναι επιβαλλόμενη
παραμόρφωση και όχι επιβαλλόμενη φόρτιση, στο σχεδιασμό των φορέων
υπεισέρχονται και παραμορφωσιακά μεγέθη του φορέα.Η ταλάντωση ευθύνεται για αυτά τα παραμορφωσιακά μεγέθη του φορέα.
Οι ταλαντώσεις και τα παραμορφωσιακά μεγέθη επιβραδύνονται από δυνάμεις απόσβεσης.Στην επιβαλλόμενη
παραμόρφωση που προκαλεί η ταλάντωση η ακτίνα
καμπυλότητας του φορέα, ( κολόνας ) έχει την τάση να μεγαλώνει.Το υδραυλικό σύστημα της εφεύρεσης παραλαμβάνει εσωτερικά ενεργειακές δυνάμεις, διότι εμποδίζει ελαστικά την ακτίνα καμπυλότητας του φορέα να μεγαλώσει, με
αποτέλεσμα η ενέργεια του ταλαντούμενου φορέα να μειώνεται με την πάροδο του χρόνου, ( διότι αυτή η ενέργεια απορροφάται σταδιακά από το υδραυλικό σύστημα,) και η
ταλάντωση μετατρέπετε σιγά σιγά σε φθίνουσα αρμονική ταλάντωση.Δηλαδή η δυσκαμψία του φορέα, οπότε και η επιβαλλόμενη
παραμόρφωση, μπορεί να ελεγχθεί ( από το αυτό ρυθμιζόμενο υδραυλικό σύστημα της ευρεσιτεχνίας ) τόσο στον δείκτη πλαστιμότητας
μετακινήσεων ( το βέλος του φορέα στην κρίσιμη διατομή, )όσο και στο δείκτης πλαστιμότητας
καμπυλοτήτων ( ακτίνα καμπυλότητας του φορέα, κολόνες )Βέβαια προυπόθεση είναι η στάθμη επιπόνησης της δυσκαμψίας του φορέα να είναι μικρότερη από τη στάθμη αστοχίας.
Το μέτρο της επιβράδυνσης της απόσβεσης, εξαρτάται συνήθως
από την ταχύτητα της κίνησης.
Η υδραυλική επιβράδυνσης της απόσβεσης είναι
ανάλογη της ταχύτητας παραμόρφωσης της ακτίνα καμπυλότητας του φορέα, και έχει φορά αντίθετη από αυτή.Υποθέτω ότι το μέτρο της επιβράδυνσης της απόσβεσης, δεν
είναι μόνο συνάρτηση της ταχύτητας, αλλά και της πίεσις των υδραυλικών μέσα στον θάλαμο του υδραυλικού συστήματος.Ερώτημα 1
Θα ήταν χρήσιμο αν μπορούσαμε να ελέγξουμε τα παραμορφωσιακά μεγέθη του φορέα?Απάντηση
Ξέρουμε ότι πλαστιμότητα είναι η, υπό ένταση, συμπεριφορά του Ο.Σ. (εν προκειμένω-γιατί μπορεί να αναφέρεται και σε άλλο υλικό-χωρίς καν σίδερα...), χάρη στην οποία το υλικό δύναται, εντός κάποιων ορίων, να δέχεται αυξανόμενη τάση ενώ διατηρεί σχεδόν σταθερή την παραμόρφωσή του.Ένα μη πλάστιμο υλικό αστοχεί απότομα (δηλαδή χωρίς προειδοποίηση της επικείμενης αστοχίας) μόλις αναλάβει το μέγιστο φορτίο του.
Υπάρχει η πλαστιμότητα του σκυροδέματος και του χάλυβα,(αντοχή χάλυβα στην ολκιμότητα)
η πλαστιμότητα των διατομών, η πλαστιμότητα δοκών και υποστυλωμάτων, καθώς και οι
παράμετροι που την επηρεάζουν.Τι γίνετε όμως αν η παραμόρφωση περάσει τα όρια της πλαστιμότητας, και περάσει στην πλαστική μη ανατρέψιμη περιοχή?
Απλά θα έχουμε αστοχία, διότι θα έχουμε υπερβεί τα πλάστιμα μεγέθη.
Ξέρουμε ότι τα παραμορφωσιακά μεγέθη του φορέα εξαρτώνται από το πλάτος της ταλάντωσης.
Η μείωση του πλάτους ονομάζεται απόσβεση.
Αυτή την απόσβεση της ταλάντωσης την αναλαμβάνει ο υδραυλικός μηχανισμός της ευρεσιτεχνίας ( διότι δεν αφήνει να μεγαλώσει την ακτίνα καμπυλότητας του φορέα και της κολόνας ) και την μετατρέπει σε μηχανική τριβή, οπότε θερμότητα.
Γενικά ο υδραυλικός ελκυστήρας είναι ένας πλάστιμος μηχανισμός απορρόφησης και απόσβεσης της ταλαντωμένης ενέργειας.
Κατ αυτόν τον τρόπο μπορούμε να έχουμε ελεγχόμενη πλαστιμότητα του φέροντα και της ακτίνας καμπυλότητας των κάθετων στοιχείων.
Τι γίνεται όμως αν οι τάσεις ξεπεράσουν τα όρια πλαστιμότητας του υδραυλικού μηχανισμού?
Πως τότε ο υδραυλικός μηχανισμός, θα κρατήσει τον φέροντα και τα κάθετα στοιχεία, ώστε αυτά να μην ξεπεράσουν την στάθμη αστοχίας?
Πολύ απλά.
Ο υδραυλικός μηχανισμός φέρει στο πάνω μέρος του εμβόλου, ένα εξωτερικό δακτύλιο, ο οποίος είναι ένα με το έμβολο.
Οπότε όταν ο φορέας ταλαντώνετε το έμβολο εισχωρεί μέσα στο χιτώνιο, μέχρι το σημείο που ο δακτύλιος του εμβόλου δεν χωράει να μπει μέσα στο έμβολο.Κατ αυτόν τον τρόπο, ο δακτύλιος ορίζει την στάθμη ταλάντωσης του φέροντα, σταματώντας αυτόν, λίγο πριν από το επιτρεπτό όριο πλαστιμότητάς του.
Σε υπέρ κατασκευές με αυξημένες ανάγκες ελεγχόμενης πλαστιμότητας, χρησιμοποιούμε μία άλλη μέθοδο κατασκευής.
Αντί να προεντείνομαι όλα τα κάθετα στοιχεία με το έδαφος, προεντείνομαι μόνο ένα κεντρικό φρεάτιο, ή δύο φρεάτια στα άκρα του φέροντα.
Προσέχουμε τα προτεταμένα φρεάτια να μην έρχονται σε επαφή με τον φέροντα.
Αυτό το επιτυγχάνομαι με την κατασκευή σεισμικού αρμού στο ύψος των πλακών, που περικλείουν ελαστομερεί υλικά.
Κατ αυτόν τον τρόπο, μπορούμε να τοποθετήσουμε και εφέδρανα ώστε να έχουμε οριζόντια σεισμική μόνωση του φορέα, αλλά συγχρόνως να επιτυγχάνομαι και την ελεγχόμενη πλαστιμότητα του κάθετου άξονα του φορέα. -
Έχει αποδειχθεί ότι ο ρόλος της πλαστιμότητας και της μετακίνησης είναι σημαντικότερος από την αντοχή που διαθέτει ο φορέας.
Γιατί όμως συμβαίνει αυτό θα προσπαθήσω να εξηγήσω πάρα κάτω.
Η διατομές των μικρών υποστυλωμάτων είναι πιο πλάστιμες από τις μεγαλύτερες διατομές τοιχίων.
Σε μία ταλάντωση του φορέα, στα μικρά υποστυλώματα καταπονείτε πιο πολύ η ακτίνα καμπυλότητας.Στα μεγάλα υποστυλώματα λόγο της μεγάλης τους αντοχής και δυσκαμψίας, καταπονούνται πιο πολύ οι κόμβοι.
Οι κόμβοι διανέμουν τέμνουσες λόγο των ροπών που προκαλεί η ταλάντωση.Η διατομή κάτοψης των μεγάλων υποστυλωμάτων αντέχουν αυτές τις τέμνουσες.
Η διατομή όμως της κοιτόστρωσης και των άλλων κόμβων με τις δοκούς ?
Για τους άλλους κόμβους που σχηματίζονται από την συμβολή των υποστυλωμάτων και δοκών, αναφέρθηκα πρίν.
Ας εξετάσουμε τώρα τις τέμνουσες που δημιουργούνται μεταξύ του μεγάλου υποστυλώματος και της κοιτόστρωσης.
Για μένα αυτός ο κόμβος κρύβει την αλήθεια στο γιατί ο ρόλος της πλαστιμότητας και της μετακίνησης είναι σημαντικότερος από την αντοχή που διαθέτει ο φορέας.Ενώ οι κόμβοι που σχηματίζονται από την συμβολή των υποστυλωμάτων και δοκών καταπονούνται από τις ροπές που δημιουργούνται από την αδράνεια του φορέα και τα στατικά φορτία, ο κόμβος μεταξύ του μεγάλου υποστυλώματος και της κοιτόστρωσης δέχεται καταπόνηση από την αδράνεια του φορέα που προκαλεί ανοδικές εφελκυστικές τάσεις του μεγάλου υποστυλώματος όπου σε συνδυασμό με τα στατικά φορτία της κοιτόστρωσης δημιουργούν τις τέμνουσες.
Αυτό συμβαίνει γιατί το υποστύλωμα έχει μεγάλες αντοχές και μικρή πλαστιμότητα οπότε αντί να έχει μεγάλη ακτίνα καμπυλότητας, αυτό λόγο δυσκαμψίας ταλαντεύεται δημιουργώντας στην κοιτόστρωση θλίψη από την μία πλευρά, και εφελκυσμό από την άλλη.
Αυτές οι δυνάμεις δημιουργούν μία ροπή η οποία έχει διαφορετική κατεύθυνση από τις άλλες των άλλων κόμβων.
Δες βίντεο http://www.youtube.com/watch?feature=pl ... 2Z1zmrJhsc
Στο 53 λεπτό μπορείτε να δείτε τον φορέα που ταλαντεύετε και παρατηρείστε.
α) Την δυσκαμψία του τοιχίου, εν σχέση με τα άλλα υποστυλώματα που παρουσιάζουν μεγάλη ακτίνα καμπυλότητας.
β) Το τοιχίο που ανασηκώνεται εναλλάξ.Συμπέρασμα
α) Αν το τοιχίο ήταν πακτωμένο με την κοιτόστρωση αυτή η πάκτωση θα δημιουργούσε τέμνουσες στην κοιτόστρωση, λόγο του εφελκυσμού του τοιχίου που εφαρμόζετε στην κοιτόστρωση, και των στατικών φορτίων της κοιτόστρωσηςβ) Αν το τοιχίο ήταν πακτωμένο ή προτεταμένο με το έδαφος, η κοιτόστρωση δεν θα υφίσταται καμία τέμνουσα. ( ή τουλάχιστον θα είχε ελάχιστες τέμνουσες )
Διότι ο μηχανισμός του υδραυλικού ελκυστήρα προστατεύει την κοιτόστρωση διότι εφαρμόζει αντίθετες τάσεις στον εφελκυσμό, αλλά και αντίθετες τάσεις στα θλιπτικά φορτία που δέχεται η άλλη πλευρά του τοιχίου.
Όπως ξέρουμε από την φυσική, οι αντίθετες ισόποσες δυνάμεις επί του ιδίου άξονα ισορροπούν.
Όταν οι δυνάμεις ισορροπούν, δεν έχουμε ροπές, που δημιουργούν τις τέμνουσες της κοιτόστρωσης. -
Αν είχατε να διαλέξετε έναν φορέα από τους πάρα κάτω ποιόν θα διαλέγατε ?
α) φορέα απλά εφαπτόμενος πάνω στο έδαφος?
β) φορέα προτεταμένο με το έδαφος?
γ) φορέα πακτωμένο με το έδαφος?
δ) φορέα ελάχιστα προτεταμένο με το έδαφος?Θέλω την γνώμη σας.
Εγώ θα προσπαθήσω να αναλύσω τα πλεονεκτήματα και τα μειονεκτήματα του κάθε φορέα ξεχωριστά ώστε να εξαχθούν χρήσιμα συμπεράσματα.α) φορέας απλά εφαπτόμενος πάνω στο έδαφος της θεμελίωσης
Αυτός ο φορέας υπόκειται στην πεπατημένη μέθοδο σχεδιασμού των κατασκευών και χωρίζεται σε δύο κατηγορίες.
α) Τους πλάστιμους φορείς
β) Στους μονολιθικούς ή δύσκαμπτους φορείς.Οι πλάστιμοι φορείς έχουν το πλεονέκτημα να παραλαμβάνουν τάσεις εντός κάποιον ορίων κρατώντας σταθερή την παραμόρφωσή τους.
Το μειονέκτημα είναι ότι ο πλάστιμος φορέας αποτελείτε από υποστυλώματα και πλακοδοκούς και είναι ημιτελής, με αποτέλεσμα να μην μπορούμε να κατοικίσουμε σε αυτόν χωρίς την πλήρωση των κενών διαστημάτων.Δηλαδή αν στον δοκιμαζόμενο φορέα του βίντεο
http://www.youtube.com/watch?v=C2Z1zmrJ ... re=related
τοποθετήσουμε τοίχους ή τζάμια, αυτά θα παρουσιάσουν αστοχίες από την μια, και θα αλλάξουν την συμπεριφορά του φορέα από την άλλη.
Συμπέρασμα
α) Οι πλάστιμοι φορείς δημιουργούν αστοχίες στην τοιχοποιία μετά από ισχυρές σεισμικές δονήσεις.
β) Τα όρια αντοχής του φορέα είναι εντός κάποιων ορίων.
γ) Καταπονούν τόσο τα υποστυλώματα στο τόξο καμπυλότητας, όσο και τους κόμβους με τέμνουσες.Για μένα δεν προτείνετε ως η ιδανική μέθοδος σχεδίασης των κατασκευών.
Μονολιθικές κατασκευές
Αυτές οι κατασκευές υποφέρουν στην τοιχοποιία που είναι και φέροντας, από λοξές τέμνουσες οι οποίες υφίστανται από τον συνδυασμό αδράνειας και μεγάλων στατικών φορτίων.
Για μένα είναι η πιο ψαθυρή κατασκευή από όλες, ιδίως στις πολυόροφες κατασκευές και αστοχεί απότομα, ακόμα και αν η κατασκευή είναι εξολοκλήρου από Ο.Σ
β) φορέας προτεταμένος με το έδαφος
Αυτός ο φορέα έχει πάρα πολλά πλεονεκτήματα αν σχεδιαστεί σωστά.
Έχει όμως και μειονεκτήματα.Πλεονεκτήματα
Αν σχεδιασθεί σωστά, μπορεί να είναι η πιο καλή λύση από όλες τις άλλες.α) Αυξάνει την αντοχή του φορέα στην τέμνουσα βάσης.
β) Πάρα πολύ μικρές παραμορφώσεις του φορέα, οπότε και απουσία επισκευών μετά τον σεισμό.
Αυτό είναι πολύ καλώ για δημόσια κτήρια όπου οι επισκευές τα κάνουν να δυσλειτουργούν π.χ Νοσοκομεία, δημόσια κτήρια, κρατικοί φορείς, γέφυρες, φράγματα κ.λ.πγ) μικρή καταπόνηση των κόμβων από ροπές και τέμνουσες.
δ) Οικονομία στις επισκευές των κτηρίων μετά τον σεισμό.
Μειονεκτήματα.
Όσο κερδίζουμε σε αντοχή, με την προένταση, χάνουμε σε πλάστιμη συμπεριφορά των υλικών και των διατομών.
Βέβαια αν η στάθμη επιπόνησης που δέχεται ο άκαμπτος προτεταμένος φορέας, είναι μικρότερη από την στάθμη αστοχίας, τότε δεν υπάρχει πρόβλημα.
π.χ τα προκατασκευασμένα από Ο.Σ ή τα τοιχία και τα φρεάτια με μεγάλη διατομή κάτοψης, αν είναι προτεταμένα μεταξύ δώματος και εδάφους, τότε δεν υπάρχει κανένα απολύτως πρόβλημα.Αν όμως δεν είναι προτεταμένα, ( μεταξύ εδάφους δώματος ) και έχουν και μεγάλη διατομή κάτοψης, τότε δημιουργούν τέμνουσες στους κόμβους.
Ξέρουμε ότι ο κόμβος αποτελείτε από οριζόντια και κάθετα στοιχεία, στα οποία το πιο ευάλωτο στοιχείο του κόμβου αστοχεί, και στην περίπτωσή μας θα αστοχήσει το οριζόντιο στοιχείο. ( η δοκός )Συνιστάτε αυτή η μέθοδος κατασκευής από εμένα, όταν έχουμε φορείς που αποτελούνται από μεγάλα κάθετα στοιχεία με μεγάλη διατομή κάτοψης, ή σε όλες τις υπόλοιπες μονολιθικές κατασκευές αποτελούμενες από φορέα τοιχοποιίας.
γ) φορέας πακτωμένος με το έδαφος
Αυτή η λύση είναι η οικονομικότερη χρησιμοποιώντας τον ελκυστήρα. ( όχι τον υδραυλικό ελκυστήρα )
Βασικά ο ελκυστήρας αποτελείται από τον ίδιο μηχανισμό πάκτωσης που έχει ο υδραυλικός, αλλά η προέντασή του εφαρμόζετε με την υπάρχοντα μέθοδο προεντάσεων.Με αυτόν τον μηχανισμό εξασκούμε ισχυρή προένταση μεταξύ του επιπέδου θεμελίωσης ( επιφάνεια εδάφους ) και γεώτρησης.
Αφού ολοκληρωθεί αυτή η εργασία, το εξέχον τμήμα του τένοντα πακτώνεται ισχυρά μέσα στο Ο.Σ της θεμελίωσης, κατά την κατασκευή της.
Αυτός ο τρόπος είναι οικονομικός διότι αποφεύγουμε την δίοδο του τένοντα μέσα από τα κάθετα στοιχεία, και η κατασκευή του μηχανισμού του ελκυστήρα είναι οικονομικότερη του υδραυλικού μηχανισμού.Δεν εφαρμόζουμε καμία προένταση στον φέροντα.
Αυτή η μέθοδος απλός πακτώνει τον φέροντα στο έδαφος στο επίπεδο της θεμελίωσης, ώστε να βοηθήσει την κοιτόστρωση και τους κόμβους στις ροπές που προκαλούν οι τέμνουσες.Πλεονεκτήματα
α) Οικονομική κατασκευή.
β) προστατεύει την κοιτόστρωση και τους κόμβους από τέμνουσες διότι εφαρμόζει αντίθετες τάσεις στον εφελκυσμό, αλλά και αντίθετες τάσεις στα θλιπτικά φορτία που δέχεται η άλλη πλευρά του τοιχίου.
γ) Μπορούμε να τοποθετήσουμε περισσότερους μηχανισμούς πάκτωσης στην επιφάνεια θεμελίωσης της κοιτόστρωσης.Μειονεκτήματα.
Χάνουμε τα καλά της προέντασης πάνω στον φέροντα.
Ξέρουμε ότι η προέντα-
ση αυτή στα πλαίσια της επαλληλίας (μέσα στο πλαίσιο αντο-
χής των κάθετων στοιχείων ) έχει πολύ θετικά αποτελέσματα,
καθότι βελτιώνει τις τροχιές του λοξού εφελκυσμού.
Από την άλλη έχουμε και άλλο καλό... τη μειωμένη ρηγμά-
τωση λόγω θλίψης, κάτι που αυξάνει την ενεργό διατομή και
αυξάνει και τη δυσκαμψία της κατασκευής, οπότε και τις παρα-
μορφώσεις που προκαλούν αστοχία.
Ακόμα βελτιώνει σημαντικά την τέμνουσα βάσης.Αυτή η μέθοδος προτείνεται για χαμηλές κατασκευές 2 με 5 ορόφων, με μεγάλα τοιχία όπου η ταλάντωση είναι μικρή.
δ) φορέας ελάχιστα προτεταμένος με το έδαφος ( πλάστιμος )
Πολλοί είναι οι μηχανικοί που θεωρούν την πλαστιμότητα αναγκαία.
Έτσι και αλιώς όλοι οι φορείς είναι σε κάποιο βαθμό πλάστιμοι, ακόμα και αν είναι προτεταμένοι.
Η ευρεσιτεχνία προσφέρει και αυτήν την δυνατότητα.Δηλαδή ο φορέας να μπορεί να έχει μία αρχική πλάστιμη συμπεριφορά, και ο μηχανισμός του υδραυλικού ελκυστήρα να επεμβαίνει μόνο για να ελαττώνει αρμονικά την ταλάντωση αυτού, καθώς και να φρενάρει την ακτίνα καμπυλότητας του φορέα όταν πλησιάζει την στάθμη αστοχίας.
Πως θα το κατορθώσουμε αυτό ???
Από την μία θέλουμε ισχυρή πάκτωση του μηχανισμού μέσα στην γεώτρηση που αυτό επιτυγχάνετε μόνο με ισχυρή προένταση,
και από την άλλη θέλουμε μικρή ελεγχόμενη προένταση ή πάκτωση του φορέα με το έδαφος.Απλά πρέπει να χρησιμοποιήσουμε μία άλλη μέθοδο.
α) πρώτα εξασκούμε ισχυρή προένταση μεταξύ του επιπέδου θεμελίωσης ( επιφάνεια εδάφους ) και γεώτρησης.
β) Συνδέουμε τον ήδη προτεταμένο εξέχοντα τένοντα που ευρίσκεται στο ύψος την θεμελίωσης, με έναν άλλον τένοντα ο οποίος καταλήγει στο δώμα και συνδέεται με το υδραυλικό σύστημα.
Η πίεση των υδραυλικών του εμβόλου, απλώς κρατάει τανυσμένο τον πρόσθετο τένοντα.
Όπως ξέρουμε η ακτίνα καμπυλότητας του φορέα κατά την ταλάντωση τείνει να μεγαλώσει.
Όμως το υδραυλικό σύστημα εφαρμόζει μία αντίθετη ελαστική και αυξανόμενη σταδιακά τάση στην εξωτερική ακτίνα καμπυλότητας του φέροντα που τείνει να μεγαλώσει.Αυτό επιτρέπει στον φορέα να έχει την αρχική του πλαστιμότητα, αλλά ο υδραυλικός μηχανισμός περιορίζει τον φορέα μέσα στα όριά του πριν αστοχήσει.
Σε αυτήν την μέθοδο, δεν υπάρχει κάθετη προένταση του φορέα.
Απλά υπάρχει μία αντίσταση στο δώμα του τοιχίου αφενός, και μία άλλη αντίσταση στην άλλη μεριά της βάσης του τοιχίου, διατηρώντας την ακτίνα καμπυλότητας στα επιτρεπτά όρια.Είναι σίγουρο ότι αυτή η μέθοδος χρειάζεται μεγάλη διατομή κάτοψης των στοιχείων, και πάκτωση των δύο άκρων αυτών για να πάρουμε καλά αποτελέσματα.
Αν θέλουμε να βελτιώσουμε την τέμνουσα βάσης, απλώς προσθέτουμε μεγαλύτερη πίεση στο υδραυλικό σύστημα.
-
Ως προς τους προτεταμένους φορείς από οπλισμένο σκυρόδεμα με σκελετό, τους μονολιθικούς φορείς από Ο.Σ και τοιχοποιία, και τους φορείς από σύμμεικτες και μεταλλικές κατασκευές, και σε αυτούς με κεντρικό πυρήνα αναφερθήκαμε στα προηγούμενα άρθρα.
Διαπιστώνετε και μόνοι σας ότι υπάρχει πληθώρα φορέων, ώστε να διαλέξουμε τον κατάλληλο για τον σωστό σχεδιασμό, και τις ανάγκες του κάθε έργου κατά περίπτωση, τόσο ως προς τις επιβαλλόμενες παραμορφώσεις, όσο και προς τον οικονομικό σχεδιασμό.
α)Είναι η πρώτη φορά που μπορούμε να έχουμε τον έλεγχο της πλαστιμότητας, τόσο στον δείκτη μετακίνησης του φορέα, όσο και στο δείκτης πλαστιμότητας καμπυλοτήτων.
β) Είναι η πρώτη φορά που μπορούμε να έχουμε κατάργηση ή τον πλήρη έλεγχο στις τέμνουσες των κόμβων.
γ) Είναι η πρώτη φορά που μπορούμε να έχουμε μεγαλύτερες αντοχές στην τέμνουσα βάσης.
δ) Είναι η πρώτη φορά που μπορούμε να πούμε ότι η θεμελίωση του εδάφους θα αντέξει τις θλιπτικές φορτίσεις σε μαλακά εδάφη κατηγορίας ( Χ ) χωρίς την βοήθεια πασσάλων.
ε) Είναι η πρώτη φορά που μπορούμε να πούμε ότι έχουμε τον πλήρη έλεγχο στις στρεπτικές ροπές του φέροντα, ( με προτεταμένα φρεάτια κατάλληλα τοποθετημένα σε επί μέρους θέσεις του φέροντα )
ζ) Είναι η πρώτη φορά που μπορούμε να πούμε ότι έχουμε τον πλήρη έλεγχο του κάθετου άξονα του φέροντος ως προς την διαφορά φάσης των πλακών, καθώς και ως προς την μεταφορά των ροπών των ορόφων.
Γενικά έχουμε τον πλήρη έλεγχο των παραμορφώσεων στα επιτρεπτά όρια της πλαστιμότητας του φορέα.
η) Έχουμε σεισμική μόνωση τόσο στον οριζόντιο, όσο και στον κάθετο άξονα του κτιρίου.Βασικά έχουμε την μέθοδο και τον μηχανισμό των κατασκευών, ώστε να μπορούμε πλέον να σχεδιάσουμε τον απόλυτο αντισεισμικό φέροντα.
-
Η Εδαφομηχανική και η χρησιμότητα του υδραυλικού ελκυστήρα.
Ο Πολιτικός Μηχανικός σχεδόν καθημερινά αντιμετωπίζει προβλήματα που
αφορούν το έδαφος.
Το χρησιμοποιεί σαν μέσο θεμελίωσης των τεχνικών
έργων, σαν υλικό κατασκευής επιχωμάτων, φραγμάτων και άλλων χωμάτινων
έργων, σχεδιάζει κατασκευές για να το αντιστηρίξει σε περιπτώσεις εκσκαφών ή
σηράγγων και τέλος πρέπει να επιλύσει ειδικά προβλήματα που έχουν σχέση με το
έδαφος, όπως: αποστραγγίσεις, αντλήσεις, διάδοση κραδασμών και σεισμικών
δονήσεων κλπ. Τα ανωτέρω προβλήματα και οι μέθοδοι επίλυσής τους εξαρτώνται
άμεσα από τη μηχανική συμπεριφορά των εδαφικών υλικών, που αποτελεί το
κύριο αντικείμενο της Εδαφομηχανικής ή γενικότερα της Γεωτεχνικής Μηχανικής.Θεωρώ δεδομένο ότι σαν μηχανικοί ξέρετε να αντιμετωπίζετε τα πάρα πάνω προβλήματα με διάφορους τρόπους, όπως ξέρετε και το κόστος που μπορεί να φθάσει η κατασκευή ώστε να περιορίσετε τις παραμορφώσεις του εδάφους.
Ακόμα ξέρετε ότι οι άκαμπτοι φορείς σε διέγερση σεισμού, επιφορτίζουν με περισσότερες τάσεις την θεμελίωση, από ότι οι πλάστιμοι φορείς.
Σε περίπτωση μάλιστα όπου ο φορέας είναι ( σαν αυτόν που προτείνω εγώ )προτεταμένος με το έδαφος, ( υπερτασικός ) τότε οι επιφορτίσεις των τάσεων της θεμελίωσης είναι ακόμα μεγαλύτερες.Ακόμα ξέρουμε ότι το έδαφος είναι γενικά ιδιαίτερα ανομοιογενές λόγω
της φυσικής του γένεσης και των επακόλουθων μετακινήσεων του φλοιού της γης,
έχει μεταβλητή σύνθεση και ανεξέλεγκτη μηχανική συμπεριφορά, οπότε αυτοί οι λόγοι μπορούν να δημιουργήσουν διαφορετικές παραμορφώσεις του εδάφους σε κάθε θεμελίωση του ιδίου φορέα, έστω και αν τα φορτία και η θεμελίωση είναι ίδια.
Δεδομένων αυτών που αναφέραμε πάρα πάνω, η χρήση του υδραυλικού ελκυστήρα θα δημιουργούσε σοβαρά προβλήματα στις κατασκευές, διότι στα χαλαρά εδάφη ο σχεδιασμός του φορέα θα περνούσε τις μέγιστες ανεκτές μετακινήσεις λόγο μεγαλύτερων παραμορφώσεων του εδάφους.Αυτά όμως δεν συμβαίνουν με τον υδραυλικό ελκυστήρα, διότι είναι σχεδιασμένος έτσι ώστε... όχι μόνο να μην δημιουργεί προβλήματα παραμόρφωσης του εδάφους θεμελίωσης, αλλά και να τα επιλύει, μειώνοντας στο ελάχιστο το πρόβλημα της παραμόρφωσης των εδαφών της θεμελίωσης που οφείλετε τόσο στα στατικά φορτία της κατασκευής, όσο και στις μέλλουσες σεισμικές φορτίσεις.
Πως ο υδραυλικός ελκυστήρας επιτυγχάνει την ελάχιστη παραμόρφωση της βάσεως του εδάφους, από οποιαδήποτε άλλη μέθοδοΑν είχαμε ένα συρματόσχοινο του οποίου η μία άκρη ήταν πακτωμένη με την βοήθεια μιας άγκυρας στα βάθη μιας γεώτρησης κάτω από την βάση, και στο άλλο του άκρο αφού διαπερνούσε ελεύθερο τα κάθετα στοιχεία, του εξασκούσαμε προένταση στο δώμα της κατασκευής, τότε θα είχαμε την παραμόρφωση του εδάφους αν ήταν χαλαρό.
Αυτό δεν συμβαίνει με τον υδραυλικό ελκυστήρα.
Η αιτία βρίσκεται στον μηχανισμό της άγκυρας, και συγκεκριμένα στους δύο σωλήνες που φέρει.http://postimage.org/image/2dmcy79yc/
Αυτοί οι σωλήνες έχουν διαφορετική διάμετρο, έτσι ώστε ο ένας να ολισθαίνει μέσα στον άλλον.
Ο εσωτερικός σωλήνας είναι συνδεδεμένος με τον τένοντα.
Ο εξωτερικός σωλήνας που είναι και ο υποδοχέας του τένοντα, καταλήγει κάτω από την βάση, και αυτός είναι η αιτία που η βάση δεν υποχωρεί όταν το έδαφος παραμορφωθεί.Αυτός ο σωλήνας όταν δέχεται τα φορτία της βάσης, τείνει να υποχωρήσει κάθετα.
Αδυνατεί όμως να υποχωρήσει κάθετα, διότι είναι συνδεδεμένος με πίρους και μπάρες πυραμοειδούς μορφής, στο άλλο άκρο του, οι οποίες μπάρες μεταβιβάζουν τα φορτία της βάσης στα πρανή της γεώτρησης.
Αυτή η μεταβίβαση των φορτίων μέσο των μπαρών, υποβοηθείται και από τις άλλες πυραμοειδούς μορφής μπάρες οι οποίες είναι ανεστραμμένες και συνδεδεμένες με τον εσωτερικό σωλήνα του τένοντα.
Κατ αυτόν τον τρόπο, οι μπάρες σπρώχνουν κατά ένα σημείο από διαφορετική κατεύθυνση, και αποκλείουν την ολίσθηση στα πρανή της γεώτρησης.
Η πάνω σωλήνα μεταβιβάζει τάσεις της βάσης στα πρανή της γεώτρησης, και η κάτω σωλήνα μεταβιβάζει τάσεις του τένοντα στα πρανή της γεώτρησης.http://postimage.org/image/2mlql3ag4/
Δηλαδή έχουμε ένα νέο είδος πασσάλου τριβής, με το επιπλέον πλεονέκτημα την συνεχή τάση στα πρανή της γεώτρησης που εφαρμόζεται μέσο του τένοντα και των στατικών φορτίων του φέροντα.
Ξέρουμε ότι το σύνολο σχεδόν των παραμορφώσεων του εδάφους
είναι μή-αντιστρεπτές, δηλαδή δεν αναιρούνται με την απομάκρυνση του αιτίου
που τις προκάλεσε
Οι πάσσαλοι τριβής αφού εισχωρήσουν στο έδαφος δημιουργούν παραμορφώσεις που είναι μη - αντιστρεπτές, που αυτό σημαίνει μικρή τριβή όταν δέχονται καθοδικά φορτία, και μηδαμινή τριβή και αντίσταση σε ανοδικά φορτία.http://postimage.org/image/14tj1webo/
Ο υδραυλικός ελκυστήρας έχει το πλεονέκτημα ( λόγο συνεχών τάσεων στα πρανή της γεώτρησης )
να έχει μεγαλύτερες πλάγιες τριβές από ότι ο πάσσαλος τριβής.Είναι σαφές ότι τα φορτία της
κατασκευής που ασκούνται στο έδαφος στα σημεία έδρασης των στοιχείων
θεμελίωσης μεταφέρονται και πέραν των σημείων αυτών με την ανάπτυξη τάσεων, οι
οποίες προκαλούν παραμόρφωση του εδάφους στην περιοχή της θεμελίωσης. Όσο
αυξάνει η απόσταση από τα σημεία έδρασης, οι αναπτυσσόμενες τάσεις μειώνονται
και συνεπώς μειώνονται και οι απαιτήσεις ανθεκτικότητας του εδάφους.
Σε όλες τις περιπτώσεις, όμως, οι πρόσθετες τάσεις λόγω των φορτίων της
κατασκευής είναι σημαντικές μόνο σε μια περιοχή κάτω από τα σημεία έδρασης
(ζώνη επιρροής).Με τον υδραυλικό ελκυστήρα έχουμε για πρώτη φορά δύο ζώνες επιρροής.
α) μία κάτω από την βάση.
β) μία προς τα πρανή της γεώτρησης.Κατ αυτόν τον τρόπο έχουμε διπλή στήριξη της βάσης στο έδαφος.
Ακόμα η συμπύκνωση της χαλαρότητας του εδάφους από τις τάσεις του υδραυλικού μηχανισμού, προσφέρουν καλύτερη θεμελίωση.
Όταν μάλιστα τοποθετήσουμε και άλλους ελκυστήρες κοντά στον κύριο ελκυστήρα, τότε η βελτίωση του εδάφους είναι σημαντική διότι η ζώνη επιρροής δεν υφίσταται μόνο στα πρανή της γεώτρησης, αλλά καθ όλο το εμβαδόν του φέροντα, και πέραν από αυτόν. -
Δηλαδή μπορούμε σε ένας φέροντα με κοιτόστρωση να τοποθετήσουμε δύο ειδών ελκυστήρες.
α) Τους υδραυλικούς ελκυστήρες με τους οποίους θα εφαρμόσουμε προένταση στα κάθετα στοιχεία μεταξύ δώματος και εδάφους.
β) Τον απλό ελκυστήρα, ( http://postimage.org/image/15or8eeuc/ )με τον οποίον θα εφαρμόσουμε προένταση μεταξύ του επιπέδου της βάσης και των πρανών της γεώτρησης.
Κατ αυτόν τον τρόπο, θα έχουμε συμπύκνωση των εδαφών σε όλο το εμβαδόν της κοιτόστρωσης, και πέραν αυτής. -
Είναι ποια κατανοητό ότι οποιοσδήποτε φορέας (άρα και το έδαφος) για να αναλάβει φορτία πρέπει να παραμορφωθεί.
Πολλές φορές ο σχεδιασμός των βάσεων είναι αρκετά υπερβολικός ( για να πετύχομε τον περιορισμό των υποχωρήσεων της κατασκευής, προπαντός της άκαμπτης ) και οδηγεί σε σημαντική αύξηση του κόστους θεμελίωσης.Οπότε το έδαφος είναι ένας μεγάλος παράγοντας που επηρεάζει σημαντικά το κόστος της κατασκευής.
Υπάρχουν κατασκευές εύκαμπτες.
Μια εύκαμπτη κατασκευή μπορεί να δεχθεί σημαντικές διαφορετικές υποχωρήσεις των σημείων έδρασης χωρίς κίνδυνο να υποστεί βλάβες.
Οι άκαμπτες είναι πιο ευάλωτες στις παραμορφώσεις του εδάφους, και ακόμα χειρότερα όταν έχουμε και διάδοση κραδασμών και σεισμικών δονήσεων.
Για να πετύχουμε την βελτίωση της μηχανικής αντοχής και για να μειώσουμε τις παραμορφώσεις του χαλαρού εδάφους, χρησιμοποιούμε διάφορες μεθόδους οι οποίες όμως και αυτές ανεβάζουν πολύ το κόστος της κατασκευής.Θα σας προτείνω ένα τρόπο θεμελίωσης ( εκτός των αναφερθέντων ) που για μένα είναι πιο οικονομικός με λιγότερες υποχωρήσεις και μικρότερες παραμορφώσεις του φέροντα.
α) Διαμορφώνουμε το οικόπεδο.
β) Ανοίγουμε περιμετρικά του έργου μικρές γεωτρήσεις για να δημιουργήσουμε στερεά εγκιβωτισμού του εδάφους που θα εδραιώσουμε την κοιτόστρωση.
γ) Ανοίγουμε και άλλες μικρές γεωτρήσεις σε επιμέρους σημεία μέσα στην περίμετρο της κατασκευής ( περιμετρικά και κάτω από τα κάθετα στοιχεία.)
δ) Τοποθετούμε αυτόν τον μηχανισμό ( http://postimage.org/image/15or8eeuc/ ) του απλού ελκυστήρα μέσα στις γεωτρήσεις, και εξασκούμε μεγάλη τάση στα πρανή τους.
ε) Αφαιρούμε τον μηχανισμό, και γεμίζουμε την γεώτρηση με οπλισμένο σκυρόδεμα.
ζ) Εναποθέτουμε πάνω στο έδαφος μία στρώση από μεγάλα χαλίκια, και μετά μία στρώση Α4 για ακόμα καλύτερη μηχανική αντοχή του εδάφους.
Κατασκευάζουμε την κοιτόστρωση.Θα βοηθούσε πολύ στον περιορισμό των υποχωρήσεων της κατασκευής και της παραμόρφωσης του εδάφους, καθώς και στην διάδοση κραδασμών και σεισμικών δονήσεων αν αφήναμε τους ελκυστήρες προτεταμένους μέσα στην γεώτρηση.
Δεδομένου ότι οι απλοί ελκυστήρες έχουν μικρό κατασκευαστικό κόστος, ( σχεδόν ίδιο με τον χάλυβα του σκυροδέματος ) θα συνιστούσα να τους αφήναμε προτεταμένους μέσα στην γεώτρηση, αντικαθιστώντας τον οπλισμό.
Για να μην οξειδώνετε ο απλός ελκυστήρας, και για να αντέχει περισσότερα στατικά φορτία, εφαρμόζουμε τα εξής.
α) Τοποθετούμε στα πλαινά πέλματα του ελκυστήρα όπου έρχονται σε επαφή με τα πρανή της γεώτρησης inox οδοντωτές επαφές.
β) Από μία οπή στο επίπεδο της επιφάνειας του εδάφους, ( αφού πρώτα έχουμε προ εντείνει τον τένοντα ) εναποθέτουμε μέσα στην οπή της γεώτρησης σκυρόδεμα.Μέθοδος προέντασης του απλού ελκυστήρα
http://postimage.org/image/15or8eeuc/
α) Όπως βλέπετε την φωτογραφεία, αν υποθέσουμε ότι το ύψος των ξύλων που στηρίζετε ο ελκυστήρας είναι το επίπεδο του εδάφους.
β) Αν υποθέσουμε ότι τα δύο τούβλα είναι υδραυλικοί γρύλοι.Τότε για να ολοκληρώσουμε την προένταση, ακολουθούμε τα εξής πέντε απλά βήματα.
α) Ανυψώνουμε στον ίδιο χρόνο σταδιακά τους γρύλους.
β) Μετά την προένταση βιδώνουμε την κάτω βίδα της φωτογραφίας έως ότου αυτή κοντράρει στο πάνω μέρος της λαμαρίνας που κλείνει την οπή της γεώτρησης στο επίπεδο του εδάφους.
γ) Αφαιρούμε τους γρύλους.
δ) Από μία οπή που έχουμε κατασκευάσει στην λαμαρίνα η οποία βρίσκετε στο επίπεδο του εδάφους, γεμίζουμε την οπή της γεώτρησης με σκυρόδεμα.
ε) Το άλλο εξέχον τμήμα του ελκυστήρα άνωθεν του εδάφους, πακτώνετε μέσα στην κοιτόστρωση κατά την παρασκευή και τοποθέτηση του σκυροδέματος.
Υ.Γ
Πριν εναποθέσουμε το σκυρόδεμα στην οπή της γεώτρησης, καλό ειναι να προεντείνουμε τον ελκυστήρα σταδιακά κατά διαστήματα μερικών ημερών, ώστε να διορθώσουμε τον ερπυσμό του τένοντα, και τις παραμορφώσεις του εδάφους.Κατ αυτήν την μέθοδο, και οι αρχικές πλάγιο αξονικές τάσης που εφαρμόζει ο ελκυστήρας προς τα πρανή της γεώτρησης διατηρούνται διαχρονικά, και ο ελκυστήρας δεν οξειδώνεται διότι είναι επικαλυμμένος με το σκυρόδεμα το οποίο δεν επιτρέπει την δίοδο του οξυγόνου που συντελεί στην οξείδωση.
-
Σχεδιαγράμματα σεισμικών φορτίσεων και παραμορφώσεων φέροντος οργανισμού καθώς και εφαρμογή τάσεων του ελκυστήρα, που αποδεικνύουν χωρίς πείραμα την χρησιμότητά του
http://postimage.org/image/49103zeup/
http://postimage.org/image/5op8ao8ed/
α) Στο πρώτο σχεδιάγραμμα http://postimage.org/image/49103zeup/ στο σχήμα 1, βλέπουμε που κατευθύνουμε τις τέμνουσες αν η κολόνα είναι πακτωμένη ή προτεταμένη με το έδαφος.
Τις κατευθύνουμε στην κάθετη διατομή της κολόνας, και όχι στην διατομή κάτοψης.
β) Ακόμα βλέπουμε πως λυγίζει το έλασμα της άγκυρας, πως παραμορφώνονται τα πρανή του εδάφους από τις πλάγιες τάσεις του ελκυστήρα.
γ) Τις τάσεις του ελκυστήρα κάτω από την βάση ( η βάση κατά την ταλάντωση του σεισμού, δεν μπορεί ούτε να σηκωθεί, ούτε να υποχωρήσει μέσα στο έδαφος λόγο παραμόρφωσης του εδάφους )Στο σχήμα 2 βλέπουμε πως τα στατικά φορτία 1 του κτηρίου και οι εφελκυστικές τάσεις 2 του ελκυστήρα, μεταβιβάζονται στα πρανή της γεώτρησης και πακτώνουμε την κατασκευή με το έδαφος σε ανοδικές και καθοδικές τάσεις.
Στο τρίτο σχεδιάγραμμα http://postimage.org/image/5op8ao8ed/ βλέπουμε τι τάσεις που εξασκούνται από την ταλάντωση του φέροντα ( τάσεις ταλάντωσης με μαύρο χρώμα )
καθώς και τις αντίθετες τάσεις ( με κόκκινο χρώμα ) οι οποίες έρχονται σε αντίθεση με τις τάσης της ταλάντωσης.
Οι αντίθετες τάσεις ισορροπούν.
Ως τώρα η αντίσταση στην ταλάντωση προερχόταν από την αντοχή των δοκών, των πλακών, της κοιτόστρωσης, και των κολονών στις τέμνουσες.
Με τον υδραυλικό ελκυστήρα αποτρέπουμε την ( καταστροφική γωνία ροπών μεταξύ εδάφους- κοιτόστρωσης ) που σχηματίζετε από την ταλάντωση, και δημιουργεί τις ροπές στους κόμβους οι οποίες στην συνέχεια δημιουργούν τις τέμνουσες των κόμβων.Αυτά τα σχεδιαγράμματα φορτίσεων του σεισμού και τάσεων του ελκυστήρα, αποδεικνύουν αμετάκλητα την χρησιμότητα της εφεύρεσης, και το μόνο που πρέπει να εξετασθεί τόσο σε προσομοιώσεις, όσο και σε πειράματα, είναι οι διατομές.
Με ευχαρίστηση θα σας λύσω τυχών απορίες.
-
Μικρό πείραμα.
Θα σας πω απλά την ιδέα μου.
Mια μέρα έβλεπα τηλεόραση με θέμα εκπομπής ...γιατί οι παγόδες στην Κίνα δεν πέφτουν κατά την διάρκεια του σεισμού.Ένας μηχανικός παρατήρησε ότι ο κύριος λόγος που οι τρις τέσσερις ξύλινοι όροφοι δεν έπεφταν, ήταν ένας τοποθετημένος κορμός δένδρου που διαπερνούσε στο κέντρο τοις ασύνδετες κατά τα άλλα παγόδες.
Την ώρα αυτή την προσοχή μου τράβηξε μια επιτραπέζια σιντιέρα (αυτές με το κεντρικό στέλεχος) Η σκέψη μου εκείνη την στιγμή πήγε στην βίδα και το ούπα. Αν βίδωνα το στέλεχος της σιντιέρας (ανελκυστήρα ή σταυροειδή κολόνα) με ένα μηχανισμό με το έδαφος ,και δημιουργούσα δύο ραντιεφ βάσεις με ελαστικά μεταξύ των , είχα λύση το πρόβλημα,της συμπεριφοράς των δυνάμεων του σεισμού ,στον υφιστάμενο σκελετό τού κτιρίου,ως πρός τον οριζόντιο και κάθετο άξονά του.
Και έκανα αυτό. http://www.youtube.com/watch?v=KPaNZcHBKRIΈχω κάνει και μόνος μου ένα μικρό πείραμα. http://www.youtube.com/watch?v=JJIsx1sKkLk
Δες αυτό το βίντεο.
Δείχνει τρεις διαφορετικούς σκελετούς οικοδομής.α) Ο πρώτος σκελετός οικοδομής είναι ελαφρύς, και για τον λόγο αυτό όταν κουνώ το τραπεζάκι αυτός ναι μεν ταλαντεύεται αλλά δεν παραμορφώνετε. ( γιατί οι γωνίες του αντέχουν το βάρος του σκελετού, με αποτέλεσμα οι δεξιές κολόνες να σηκώνουν τις αριστερές, και εναλλάξ οι αριστερές τις δεξιές)
β) Ο δεύτερος φέροντας σκελετός οικοδομής είναι πιο βαρύς, διότι του τοποθέτησα δύο τούβλα, για να έχει το βάρος μιας πραγματικής οικοδομής υπό κλίμακα.
Όταν κούνησα πάλη το τραπεζάκι, η συμπεριφορά του σκελετού ήταν άλλη.
Οι δεξιές κολόνες δεν σήκωναν πια τις αριστερές.
Αυτό που έγινε, ήταν οι γωνίες από 90 μοίρες που ήταν αρχικά, να παραμορφώνονται και να γίνονται πότε 80 μοίρες, πότε 100 μοίρες.
Αυτό γίνεται διότι κατά την ταλάντωση η κολόνες από κάθετες που είναι αρχικός, αλλάζουν μερικές μοίρες.
Αφού οι κολόνες αλλάζουν την κλίση τους, και συγχρόνως είναι ενωμένες στην γωνία με την δοκό, σπρώχνουν την δοκό προς τα πάνω.
Η δοκός όμως δεν μπορεί να πάει προς τα πάνω, διότι το βάρος των τούβλων την σπρώχνει προς τα κάτω και σπάνε οι γωνίες της οικοδομής ( διότι δημιουργούνται ροπές στις γωνίες, οι οποίες με την σειρά τους δημιουργούν τέμνουσες στις κολόνες και στους δοκούς και σπάνε )
Αυτό συμβαίνει σήμερα στις κατασκευές.
Τι προτείνω εγώ.
γ) Κατασκεύασα έναν σταυρό, ( είναι τα χωρίσματα των διαμερισμάτων ) και τον βίδωσα με την ξύλινη βάση που είναι το έδαφός θεμελίωσης
Πέρασα κολάρο τον σκελετό στον ξύλινο σταυρό.
Του έβαλα επάνω και τα τούβλα, με πολύ ψιλό κέντρο βάρους.
Κούνησα πάλη το τραπεζάκι, και παρατήρησα ότι οι γωνίες δεν παραμορφώνονται καθόλου.
Η παραμόρφωση είναι αυτή που ρίχνει το σπίτι στον σεισμό.
Εγώ αυτήν την παραμόρφωση σταμάτησα στον σκελετό.
Δες τις γωνίες πως αντιδρούν όταν έχουμε σεισμό, με την μέθοδο που προτείνω.
Καμία παραμόρφωση, 0 επισκευές μετά τον σεισμό. -
**Τι νόημα θα είχε ένα αντισεισμικό σύστημα όταν το 95~99% των κατασκευών δεν θα είχαν προβλήματα με τον σημερινό αντισεισμικό σχεδιασμό σε επερχόμενο σεισμό? **
Υπάρχει κάτι που διαφοροποιεί σημαντικά το σεισμό απο τα υπόλοιπα φορτία, αυτό είναι το γεγονός ότι ο σεισμός είναι τυχηματικός (chance based) . Αυτό σημαίνει ότι μπορεί ένα κτίριο κατά την διάρκεια της ζωής του (50 χρόνια) να μην γνωρίσει ποτέ σεισμό τέτοιου μεγέθους για τον οποίο έχει υπολογιστεί . Αποτέλεσμα αυτού είναι τεράστια ΖΗΜΙΑ στην εθνική οικονομία γιατί γίνεται υπερδιαστασιολόγηση τυπικά αλλά και ουσιαστικά .
Φυσικά εξαιτίας του γεγονότος ότι τα σεισμικά ιστορικά στοιχεία είναι σχετικά περιορισμένα(χρονικά) και υπάρχει σημαντική αβεβαιότητα για προσδιορισμό τόσο του χώρου όσο και του μεγέθους κάθε σεισμού οποιαδήποτε γενικά αντιμετώπιση όλων των κατασκευών με τον ίδιο τρόπο είναι λάθος .
Παράδειγμα είναι το Kobe Ιαπωνίας που το 50~60% των κατασκευών που υπέστησαν ζημιές κατασκευάσθηκαν ξανά με την ίδια λογική και με τον ίδιο ακριβώς τρόπο . Όταν κάποια κατασκευή ήταν ιδιαίτερα σημαντική τόσο για την οικονομική ζωή όσο και για την προστασία των πολιτών τότε έμπαιναν κριτήρια τα οποία ενίσχυαν την αντισεισμική προστασία της κατασκευής .
Θέλω να καταλήξω ότι εάν δεν υπολογίσεις Price/performance ratio σε οποιαδήποτε αντισεισμικό σύστημα και να το συγκρίνεις με τις υπάρχουσες κατασκευές , δεν έχει καν νόημα η αποτελεσματικότητα του άλλωστε ....( ερώτηση ) τι νόημα θα είχε ένα αντισεισμικό σύστημα όταν το 95~99% των κατασκευών δεν θα είχαν προβλήματα με τον σημερινό αντισεισμικό σχεδιασμό σε επερχόμενο σεισμό?Απαντηση
α) Αν σήμερα η δική σας μέθοδο θέλει 150 κιλά σίδερο στο κυβικό μέτρο σκυροδέματος, για τον μερικό αντισεισμικό σχεδιασμό, και περισσότερα για τον πλήρη αντισεισμικό σχεδιασμό, εγώ το θεωρώ ασύμφορο.
Όταν το Μετσόβιο συγκρίνει την δικιά σας μέθοδο με την δικιά μου και λέει ότι η δικιά μου είναι τόσο τα% πιο ισχυρή στην τέμνουσα βάσης στον σεισμό, αυτό τι πάει να πει?
Πάει να πει ( διατομή X3 ) πιο ισχυρή στην τέμνουσα βάσης. Και ρωτάω μπορώ να χρησιμοποιήσω λιγότερα σίδερα αν τοποθετήσω τον ελκυστήρα.? ( Οπότε εδώ είμαι πιο οικονομικός από τον σχεδιασμό σας )Η αυτό που είπα πριν ότι οι κατασκευές σας σε ένα σεισμό ισχυρό το 95 με 99% δεν έχουν ανάγκη, συμφωνώ, αλλά το 70% από αυτές θέλουν επισκευές μετά τον σεισμό, με ότι αυτό συνεπάγεται σε κόστος.
Γιατί σήμερα οι κατασκευές σχεδιάζονται με αυξημένη πλαστιμότητα, είναι πολύ ευλύγιστες και ναι μεν δεν αστοχούν ολικά, αλλά αστοχούν υπερβολικά επισκευαστικά.β) Για να αποφύγετε την παραμόρφωση του εδάφους της θεμελίωσης, και τις παραμορφώσεις του σκελετού από την καθίζηση, δεν κατασκευάζετε υπερβολικά μεγάλες βάσεις θεμελίωσις, όταν μάλιστα το έδαφος είναι μαλακό?
Όταν το έδαφος είναι μαλακό, δεν αφαιρείται έδαφος για να έχετε καλύτερη θεμελίωση?
Όλα αυτά δεν είναι έξοδα κατασκευής?
Αν με το σύστημά μου σας προσφέρω έδαφος ισχυρό τότε δεν θα μειώσετε τα μπετά στις βάσεις, και θα αποφύγετε την μεγάλη εκχωμάτωση? ( Οπότε και εδώ είμαι πιο οικονομικός από τον σχεδιασμό σας )γ) Εσείς γιατί βάζετε τόσο πολύ οπλισμό στις κολόνες τις δοκούς τις πλάκες, και τις βάσεις?
Για να έχετε μεγαλύτερη αντοχή στις τέμνουσες... ναι ή όχι?
Αν η μέθοδός μου καταργεί το 80% από τις τέμνουσες που δημιουργεί η μέθοδό σας, πόσο πρέπει να μειωθεί ο οπλισμός? ( Οπότε και εδώ είμαι πιο οικονομικός από τον σχεδιασμό σας )δ) Αν τα προκατασκευασμένα για τον Α ή Β λόγο τους επιτρέπουν σήμερα να βγάλουν άδεια μόνο για δύο ορόφους, και με την μέθοδό μου απαλείψω τον Α και Β λόγο και τα κάνω να αντέχουν και να παίρνουν άδεια για δέκα ορόφους, δεν μειώνω αυτόματα το κόστος της οικίας κατά 50% αφού τα προκατασκευασμένα από μόνα τους είναι πιο φθηνά? ( Εδώ το παράκανα στην οικονομία )
ε) Ένα νοσοκομείο, μία γέφυρα ένα φράγμα είναι εύκολο να το επισκευάζουμε συνέχεια μετά από ένα ισχυρό σεισμό? Τι θα κάνουν οι ασθενείς, και οι οδηγοί? Λάσπη, ή μπετό?
Έτσι και αλιώς σήμερα υπάρχει μόνο μερικός, και πλήρης αντισεισμικός σχεδιασμός.
Εγώ σχεδίασα τον απόλυτο αντισεισμικό σχεδιασμό, αν αυτό σας λέει κάτι.Όλα αυτά που είπα, πιστεύω να καταλάβατε ότι δεν είναι καθόλου άσχετα μεταξύ τους.
Απαντάνε επί της ουσίας του θέματος στις κατασκευές που είναι τόσο το κόστος, όσο και η ασφάλεια των κατασκευών.Όταν μιλάμε για σύγκριση των δύο μεθόδων, + Μετσόβιο, εννοούμε σύγκριση τόσο στην τέμνουσα βάσης, όσο και στο επίπεδο των συχνοτήτων.
Μερικοί μηχανικοί θα με αποκαλέσουν τρελό που σκέπτομαι να αφαιρέσω οπλισμό από τα κάθετα στοιχεία, μιας και σήμερα στα περισσότερα στοιχεία τα σίδερα υπολογίζονται είτε απο As,min είτε απο περιορισμό /200(και διάφορες κανονιστικές διατάξεις) είτε απο ικανοτικό σχεδιασμό και όχι αναγκαστικά απο τους συνδυασμούς φορτίων σεισμικών ή μη .
Απάντηση περί ικανοτικού σχεδιασμού
Πρώτον δεν έχεις ικανοτικό σχεδιασμό χωρίς γερά θεμέλια. ( τα προσφέρει η ευρεσιτεχνία )
Βάζετε το σπίτι ( με μεγάλη πλαστιμότητα ) να χορεύει σαν μπαλαρίνα και το κατορθώνεται με κατάλληλα τοποθετημένο οπλισμό και αρθρώσεις?
Οι κανονιστικές διατάξεις είναι μπαλώματα.
Το μαζεύετε από την μία, σας την κάνει από την άλλη.
Δεν είναι δυνατόν να συγκριθεί η δική μου μέθοδος με κανόνες ικανοτικού σχεδιασμού όπως κάνετε με την δικής σας μεθόδο.
Διότι εσείς έχετε πλαισιωτούς φορείς με πλαστικές αρθρώσεις σε δοκούς και κολόνες, με σκοπό να περιορίσετε τον μηχανισμό ορόφου, και να κατανέμετε τις πλαστικές παραμορφώσεις σε όλους τους ορόφους.
Η δικιά μου μέθοδος σε ψιλά κτήρια αυτό το κατορθώνει με άλλον τρόπο.Τι να τις κάνω εγώ τις πλαστικές αρθρώσεις, τις πλαστικές στροφές, τις καμπτικές αρθρώσεις, τις εφελκυόμενες διαγώνιες κλπ
Η ΔΙΚΙΆ ΜΟΥ ΜΕΘΟΔΟΣ ΔΕΝ ΧΩΡΕΥΕΙ ΣΤΑΡΛΕΣΤΟΝ.
Η μέθοδος μου και το σύστημα που διαθέτω είναι το εργαλείο για να ελέγχετε όλα τα πάρα πάνω που απαιτεί ο ικανοτικός σχεδιασμός, για να έχετε έναν ομοιόμορφο πλάστιμο φορέα, μέσα στα όρια σχεδιασμού.
Πως ? με άλλη μέθοδο ...την μέθοδο του κεντρικού προτεταμένου φρεατίου με το έδαφος, ή την μέθοδο των πολλαπλών προτεταμένων φρεατίων ή στοιχείων με το έδαφος, τοποθετημένα σε επί μέρους κατάλληλα σημεία, ώστε να παραλάβουν τις στρεπτικές τάσεις του φέροντα
Δείτε την http://www.youtube.com/watch?v=KPaNZcHBKRI
Η πλαισιωτή πλάστιμη κατασκευή σας, τοποθετήτε περιμετρικά μιας άλλης άκαμπτης μη πλάστιμης κατασκευής αλλά τόσο ισχυρή ώστε να αντέχει και τις στρεπτικές ροπές των ορόφων, και τις αδρανιακές εντάσεις, και τις ροπές και τις κρούσεις.....τα πάντα. Είναι ένας υπερστατικός φορέας ΄προέκτασης του εδάφους.
Όταν έχουμε σεισμό, η πλαισιωτή σας κατασκευή λόγο του τόξου καμπυλότητος και της μετακίνησης που διαθέτει λόγο πλαστιμότητας, πάει και συγκρούεται με τον δικό μου άκαμπτο και προτεταμένο με το έδαφος φορέα, ( υπερστατικό ) ο οποίος σταματά την μπαλαρίνα να πέσει κάτω, και μάλιστα πάρα πολύ απαλά γιατί έχω φροντίσει να έχω βάλει στο επίπεδο των πλακών και των φρεατίων σεισμικό ελαστομερή αρμό.
Για πιο ικανοτικό σχεδιασμό να μιλήσουμε? για τον δικό σας , ή για τον υπερστατικό ικανοτικό σχεδιασμό μου?
Ο seismic και το αντισεισμικό